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I. INTRODUCTION

Muon capture reactions on light nuclei have been studied
intensively, both experimentally and theoretically, for many
years. Earlier achievements are summarized in Refs. [1-3].
More recent theoretical work has focused on the u™ +
’H — v, +n+nandpu” + ‘He — v, + 3H reactions and is
described in Refs. [4-6]. The calculation of Ref. [4] was per-
formed both in the phenomenological and the “hybrid” chiral
effective field theory (x EFT) approach, initiated in Ref. [7].
It was based on Hamiltonians comprising two-nucleon (2N)
and three-nucleon (3N) potentials. The weak-current operator
included not only the single-nucleon contribution but also
meson-exchange currents (MECs) as well as currents arising
from the A-isobar excitation [8]. Later these two reactions
were studied in a “nonhybrid” x EFT approach [9,10], where
both potentials and currents were derived consistently from
x EFT. The results obtained within different approaches agree
with each other and describe the available experimental data
well.

In Ref. [11] we joined our expertise: from the momentum
space treatment of electromagnetic processes [12,13] and
from the potential model approach developed in Ref. [4]. We
found that new results for the = +*H — v, +n +n and
1~ +*He — v, + *H reactions calculated in the momentum
space were in good agreement with those of Ref. [4], which had
been obtained using the hyperspherical harmonics formalism.
Thus we could take the first step to establish a theoretical
framework that can be extended to all the A < 3 muon capture
reactions, including three-body breakup of the A = 3 systems.
By using the Faddeev equation approach, we provided, for the
first time, predictions for the total and differential capture rates
of the u= +°He — v, +n+d and u~ +*He — v, +n +
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n + p breakup reactions, calculated with the full inclusion of
final-state 2N and 3N interactions. Although we incorporated
selected MECs in the momentum space treatment of the
n~+?H— v, +n+n and u~ +>He — v, + *H capture
reactions, in the calculations of the breakup channels in muon
capture on *He we restricted ourselves to the single-nucleon
current, with the weak nucleon form factors from Ref. [14].
Muon capture on 3H has attracted less attention. This
reaction, with all uncharged particles in the final state, would
be very difficult to measure because of the radioactivity of
the target and due to the mesomolecular complications [1].
The = +3H — v, +n+n+n capture process presents,
however, interesting features that make this process worth
investigating: it allows one to study the neutron-neutron
interaction and the three-neutron force acting exclusively in the
total isospin 7 = 3/2 state. Moreover, its study is the natural
next step after the u~ + *He — v, +n +n + p reaction has
been considered. Theoretical studies of muon capture on *H
were started in the 1970s [15-17]. Those early calculations
were performed predominantly in configuration space, using
the 2N potential models available at that time. In Ref. [15] a
separable potential of the Yamaguchi type was employed in
the calculations based on Amado’s method [18] and thus the
final-state interaction (FSI) was taken into account. Actually
that article focused on the three different muon capture
reactions in *He and the information about the capture rate
on 3H was extracted from the total isospin T = 3/2 rate
calculated for the three-body breakup of *He. The FSI effects
and meson-exchange currents were neglected in Ref. [16] but
some observations about the reaction mechanism proved to
be correct. In particular the authors predicted that inclusion
of the FSI would lead to an enhancement of the muon
capture rate. A better calculation scheme was introduced in
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Ref. [17]. The authors presented a general method to deal
with transitions from a 3N bound state to scattering states
caused by a weakly acting Hamiltonian and applied it to
muon capture on *H. They obtained results not only under
the plane wave (PW) approximation but also including 2N
interactions (in the form of the supersoft-core nucleon-nucleon
potential [19]) in the three-neutron continuum. More recent
theoretical investigations were conducted by Dzhibuti and
Kezerashvili [20]; they used the method of hyperspherical
functions in coordinate space and employed four different
central potentials in their calculations. Like in Ref. [17],
they found FSI effects to be very important. Their results
were sensitive to the form of the 2N potential used in the
calculations. Table I in Ref. [20] nicely summarized all the
early theoretical predictions.

In this article we extend our investigations of the u~ +
‘He — v, +n-+d and w +3He — v, +n-+n+ p cap-
ture reactions presented in Ref. [11] to describe also the
©~ 4 3H — v, +n + n + n process. This reaction is studied
under full inclusion of final-state interactions, employing
the AV18 2N potential [21] alone or together with the
Urbana IX 3N force [22]. Our results are based on the
single-nucleon weak-current operator including relativistic
corrections [11].

In principle the total capture rates on >H and *He in the
full breakup channel for the total 3N isospin 7 = 3/2 are
related by an isospin transformation. Therefore, we could
use results given already in Ref. [11]. A similar situation
was found for the response functions in inclusive electron
scattering on 3H and *He (see, for example, Refs. [12,23]).
The isospin relation holds exactly if one assumes that
the proton-neutron or (strong) proton-proton interactions are
the same. Nowadays it seems rather indispensable to take the
charge independence breaking, at least on the level of 2N
interactions, into account. We do not think that using only the
proton-neutron 2N potential in the study of the total muon
capture rate on *He would have made a big difference but we
included the neutron-neutron (and proton-proton) interactions
in the 3N continuum to be consistent with the 3N bound-state
calculations. Because presently our calculations do not require
large computational resources, we can afford new calculations
including different 2N interactions and do not rely on the
isospin relation. Moreover, we follow the historical path and
get the total capture rate by explicit integrations over the
whole three-neutron phase space, which allows us to show also
differential capture rates. This information could be potentially
useful for benchmark calculations and (hopefully) for future
experimental studies.

The article is organized in the following way. In Sec. II
we briefly introduce the elements of our formalism. Our
main results are shown in Sec. III, where we discuss various
predictions obtained with different dynamics for the u™~ +
SH — v, +n + n + n reaction. We show our results for the
differential and integrated rates and compare them with earlier
theoretical predictions. To the best of our knowledge, we are
for the first time able to include final-state interactions based
on modern 2N and 3N forces in a manner consistent with the
bound-state calculations. In all cases we show separate results
for the capture rates from the two hyperfine states, F = 0 and
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F =1, of the muon-tritium atom. Finally, Sec. IV contains
concluding remarks.

II. THEORETICAL FORMALISM

For the muon capture process one assumes that the initial
state |i) consists of the atomic K -shell muon wave function
|vym,) with the muon spin projection m, and the initial
nucleus state with the three-momentum P; (and the spin
projection m;):

i) = [Yrm ) |V Pim;). 2.1

In the final state, | /), one encounters the muon neutrino (with
the three-momentum p, and the spin projection m,), as well
as the final nuclear state with the total three-momentum P
and the set of spin projections m s:

[f) = vupom,) WP rm ). (2.2)

The transition from the initial to the final state is driven by the
Fermi form of the interaction Lagrangian (see, for example,
Ref. [24]) and leads to a contraction of the leptonic (£;) and
nuclear (N*) parts in the S-matrix element Sri [25]:
G
Sy =iQRun)*" P — P)— L, N, (2.3)
f ﬁ A

where G = 1.14939 x 107> GeV~2 is the Fermi constant
(taken from Ref. [4]) and P (P’) is the total initial (final)
four-momentum. The well-known leptonic matrix element

1
Ly = —=u(py,my)ya(l — ys)u(pu,my) = L

1
- Qn) @)}

2.4)

is given in terms of the Dirac matrices and spinors.
The nuclear part is the essential ingredient of the formalism
and is written as [12,25]

1 .
N = —— (WP rmy|jo |V Pim;) =

— A
= 57 = o N*. (2.5)

It is a matrix element of the nuclear weak-current operator j
between the initial and final nuclear states. In this article we
omit many-nucleon contributions to j and restrict ourselves
to two forms of the single-nucleon current operator. The first
one, jt = jlz, is strictly nonrelativistic, with the following
momentum-space matrix elements of its time and space
components [25]:

. o-(p+p)
(P'ljngIP) = (glv +g{*T>r_ (2.6)
and
(p'linr|P)
p+p 1 . ,
= <8YW - W(&V —2Mgy)io x (p—p)
N (p - P/)

+gi'o +g£‘(p—p)T>r, 2.7)

where M is the mean value of the proton (M) and neutron
(M,) masses, M = %(M‘,7 +M,), 1_ = (1, —it,)/2 is the
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isospin lowering operator, ¢ is a vector of Pauli spin matrices, The second form of j, leR+RC’ contains relativistic
and p (p’) is the initial (final) nucleon momentum. Here we ~ 1/M? corrections, which leads to additional terms in the
keep only terms up to 1/M. corresponding matrix elements [11]:

J

- @ —p)? . (p'xp) o
(p |.]13R+RC|p) = (gY - (8}1 —4M83/)W + (g}/ —4Mg§/)z o
20-P+p)  L@*—p) ,
e —y T8 e @) (2.8)
and
. p+p 1 . P+p)
(P'linr+rc|P) = |:g1V T ﬂ(glv —2Mg))ie x (p—p) +g1A<1 - )

g? / / . / A N4 (P_P/)

+m[(p~a)p +@-o)p+i(pxp)l+g (p—p)—ZM T_. (2.9)

This form of the nuclear weak-current operator is very close to the one used in Ref. [4]; see Ref. [11] for details. Note that the
weak nucleon form factors g, g5, g1, and g4 are usually expressed in terms of the isovector components of the electric (G}.)
and magnetic (G}(l) Sachs form factors as well as the axial (G 4) and pseudoscalar (G p) form factors:

Gy =g, (2.10)
Gy =8 —2Mg;, Q.11)
Ga=—gl, (2.12)
Gp=—gim,. (2.13)

Like in Ref. [11], in this article we also employ the form factors from Ref. [14].

The essential part of the decay rate formula stems from the contraction of the leptonic and nuclear matrix elements. Note that,
contrary to what was erroneously stated in Ref. [11], we use indeed the same notation as Bjorken and Drell [26] but with the
different spinor normalization. To be explicit, we use the following definitions:

E+ :
u(p.s) = ,/2—Em < X ) ) (2.14)

E+m

which means that u'u = 1 and iu = %> where m is the particle mass and E = Vm? + p?. We assume of course that the

two-component spinor x, is normalized to yield XST xs = 1.
Because we deal with a specific muon capture reaction, we switch from the general notation to the one where the relevant
spin projections are given explicitly:

L)» = L)»(mlhmu.))

1\7)L = Nk(ml,mg,m3,m3H), (215)
and we use in the following the minus one spherical component of N: N_; = \/LE(NX — iNy). With these definitions, assuming
additionally that p, = —2 and that the initial muon is at rest, we easily evaluate the following for the unpolarized case:

1
|T|2 = Z Z Z |LA(vam;L)NA(m] 7m27m35m3ﬂ)|2

I3y I, M,y

1
=52 2 (N°Omimamsmog)® + INo(myma.ms,moy)

m3H mip,mp,m3
+2|N_ (my,ma,m3,mag)|* 4 2Re{ N (my,ma,m3,ms)[N, (my,ma,m3,ms)]*}). (2.16)

This form is not appropriate when we want to separately calculate capture rates from two hyperfine states, F = Qor F = 1, of
the muon-tritium atom. In such a case we introduce the coupling between the triton and muon spin via standard Clebsch-Gordan
coefficients c(%, %,F; m,,,msy,mr) and obtain

2

1 11
Th=sr722 2 |2 c(z,5,F;mu,msH,mF)Lxmv,m,L)N*(ml,mz,mg,mzH) : 2.17)

mp ny,mo,m3,m, (M ,m3g,
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The explicit formulas for F = 0 and F = 1 read

Thoo= D

my,myp,ms3

and

2 1
|T|%7=1 = g Z <‘N0<m1,m2,m3,m3H = 5)

miy,ma,ms3

S

2

1
+ ‘Nl <m1,m2,m3,m3H = E)

2

1
+ ‘Nz <m1,m2,m3,m3H = 5)

2

1 1

+\/§R6{N0(m1,m2,m3,m3H = ——) |:N_1 (ml,mz,m_g,msH = E])
1 1

++/2Re N | my,ma,m3,msy = —= || Noi| my,ma,m3,msy = =

2

These three quantities, 7%, |T° |f;=0, and |T |f,=1 are not
independent but obey the obvious relation

IT1> = HT o + 31T 15 (2.20)
The crucial matrix elements
N*(my,may,mz,may) = (WP = —pymimoms| Wiy
P; = Omsy) 2.21)

are calculated in two steps [12,13]. First we solve a Faddeev-
like equation for the auxiliary state |U*) for each considered
neutrino energy:

UY) = [1Go+ 31 + PYV,VGo(1 +1G)|(1 + P)j|Wsy)
+ [tGoP + 11 + PYV"Go(1 + 1Go) P]IU),
(2.22)
where V4(1) is a part of the 3N force symmetrical under the
exchange of nucleons 2 and 3, G is the free 3N propagator,
and ¢ is the 2N ¢ operator acting in the (2,3) subspace. Further,

P is the permutation operator built from the transpositions P;;
exchanging nucleons i and j:

P = P, Py3 + P13 Po3. (2.23)

In the second step the nuclear matrix elements are calculated
by quadratures:
N*(my,ma,m3,msy)
= (P imams|(1 + P)jy,|Wsyy)
+(GunnPm1mams|t Go(1 + P) jy, | Wayy)
+(@unnPQm1mom3| P|U*)

+(PunnPgmimam; |t Go PIU*). (2.24)

N°(my,m N _ v “Niw _ !
1,M2,Mm3, M3y = > —1 ml,mz,m3,m3H—2 + N\ my,my,m3,msy = 2
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2

(2.18)
2 N2
+ Z‘N_l <m1,m2,m3,m3H = —§>
o 1 NG
+ A N mlstam3vm3H = _E + NZ ml,mz,m3,m3H = _E
0 1 N
+2ReyN" | m1,my,m3,msy = 5 N | my,my,m3,msy = 5
]
5 }) (2.19)

[
Here |¢,n, pqmimoms3) is a product state of Jacobi momenta p
and q describing two free motions in the three-neutron system:

P = 3(p2—p3),

2 1 1
a=3(pi— 3@ +py) =pi+ 3P (229

Equations (2.22) and (2.24) simplify significantly when
V4(1) = 0 [13]. In this case one obtains

|U*) = tGo(1 + P)j:[Wsy) +tGoP|U*)  (2.26)

and
N*(my,mo,m3,msp)(@uunPqmimoms| (1 + P)jl [Wiy)
+(Guun PQmymams | (14 P)|U™).
2.27)

Taking all factors into account, using the rotational symme-
tries of the unpolarized case and evaluating the phase-space
factor in terms of the relative Jacobi momenta p and q,
we arrive at the final expression for the total capture rate for
the 4~ +*H — v, +n + n + n reaction:

3,1 (M)

r=-G — 4
27 ny e

E'J“X’mm
X /
max

2 p 22 5
X / d¢>p/ dpp°>Mq|T|",
0 0 3

(M3 )
where the factor —%—
M3H M,

1 T T
dEvEf§ /0 do, sin6,2m /0 do, sin6,
(2.28)

stems from the K-shell atomic wave

function, M;H = WM and o ~ %7 is the fine-structure
constant. The value of ¢ = |q| is defined through Eq. (2.29)
below. The additional factor R can account for the finite

volume of the *H charge but we take R = 1 in the present
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calculations. Note that the current operator of nucleon 1 is
used when evaluating |72
To fix the upper limit of the integration over p in Eq. (2.28),
we express the energy conservation in terms of the Jacobi
momenta:
2 2 2
P 3q 1E
My +My~E, +3M+—+-—+—-—. (229
w+ My + + i + o] + S (2.29)
Like for the 4~ +?H — v, +n + n reaction studied in
Ref. [11], we can consider the hyperfine states in the muon-
tritium atom, replacing |7 |* by |’T|2F=0 or |T|2F=1.

III. RESULTSFORTHE = +*H—> v, +n+n+n
REACTION

We start with the kinematics of the u= +3H — v, +n +
n + n reaction, which is formulated exactly in the same way
as in Ref. [11] for the u~ + ‘He — v, +n +n 4+ p process.
The relativistic (rel) and nonrelativistic (nrl) maximal neutrino
energies for this three-body capture of the muon atom are
evaluated as

(Emax,nn”)fel — M3H2 + 2M3HMu + Mﬂz — 9M”2

= 94.3078 MeV, G.1)
(Elrjnax,nnn)nrl — \/3Mn Mz + 2M/1 —-3M,) - 3M,

= 94.3073 MeV. 3.2)

The kinematically allowed region in the E,-E, plane for
the breakup of 3H is shown in Fig. 1. We show the curves
based on the relativistic and nonrelativistic kinematics. They
essentially overlap except for very small neutrino energies. Up
to a certain E, value, which we denote by E2*!, the minimal
neutron kinetic energy is zero. The minimal neutron kinetic
energy is greater than zero for E, > E*°. Even this very
detailed feature of the kinematical domain can be calculated
nonrelativistically with high accuracy (see also the inset in

70 prerrre e
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40
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20
10

o J T P U U U U P S I I VI
0O 10 20 30 40 50 60 70 80 90 100

E, [MeV]

E, [MeV]

FIG. 1. The kinematically allowed region in the E,-E, plane
calculated relativistically (solid curve) and nonrelativistically (dashed
curve) for the u~ +°H — Vv, +n +n 4+ n process.
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Fig. 1). The values of £ based on the relativistic kinematics,

_ Moy + M) (Mo + My, — 2M,,) — 3M,*?
2 Moy + M, — M,)

)

(Egsol)rel

3.3)
and nonrelativistic kinematics,

(Egsol)“rl — 2(\/M3HMn +M,M, — 2M,,2 - M,,), (3.4)

yield very similar numerical values, 93.5574 and
93.5561 MeV, respectively. This supports the notion that
predictions based on the nonrelativistic 3N dynamics should
be valid for the considered capture process.

The solutions of Egs. (2.22) and (2.26) as well as the
evaluations of the nuclear matrix elements in Eqs. (2.24)
and in Eqgs. (2.27) are obtained using partial-wave de-
composition (PWD). We employ our standard 3N basis
|pge Jmy; Tmy) [12], where p and g are magnitudes of the
relative Jacobi momenta and & is a set of discrete quantum
numbers. Note that the |pgaJm;; Tmr) states are already
antisymmetrized in the (2,3) subsystem. The initial 3N bound
state is therefore represented as

111
|Wapmay ) = Z/dppzquqz‘pq&hzmsﬂ;5,—§>
ap

X ¢, (p.q). (3.5)

In our calculation of the 3N bound state we use 34 (20)
points for integration over p (q) and 34 partial-wave states
corresponding to the 2N subsystem total angular momentum
j<4

In Ref. [11] we checked that it is sufficient to perform
calculations in the 3N continuum with j < 3. The convergence
with respect to the total 3N angular momentum J is also very
rapid and in the present calculations we include all the 3N
partial-wave states up to Jypax = %. The first building block
in our scheme requires PWD of the single-nucleon current
operator:

(pgaJmy; TmrP s ju(D|Ws4P; = Omsy). (3.6)

This step is described in detail in Ref. [11].

‘We refer the reader to Ref. [12] for the detailed definitions
of various 3N dynamics. Here we only note that our PW
predictions shown in the following for the sake of comparison
with the earlier calculations are obtained with

N*(my,ma,m3,msy) = (@uuapgqmimams|(1 + P)jL|Wsy).
3.7

We start the discussion of our predictions with Fig. 2,
where the differential capture rates dI"/dE, are shown for
the considered u~ + 3H — v, +n +n +n capture reaction
and effects of the relativistic corrections in the single-nucleon
current operator are studied. The results are calculated with the
2N forces only. Although the rates are not independent [see
Eq. (2.20)], we display all three quantities. Clearly, the values
for F = 0 are much bigger than those for F = 1. Because
the F = 0 rate dominates, the F = 0 [Fig. 2(a)] and total
[Fig. 2(c)] rates change with the neutrino energy in a very
similar way. They rise very slowly for small neutrino energies
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FIG. 2. The differential capture rates (F = 0) dI'*=°/dE, (a),
(F = 1)dI'™='/dE, (b), and (total) dT"/d E, (c) for the ©~ + *H —
v, +n+n+n process calculated with the single-nucleon current
operator without (dashed line) and with (solid line) relativistic
corrections. The calculations are based on the AV 18 nucleon-nucleon
potential [21] only.

and show a strong maximum in the vicinity of the maximal
neutrino energy, where the phase-space factor reduces all the
differential rates to zero. The behavior of the F =1 rate
is different. Its values grow much faster with the neutrino
energy and the corresponding maximum is therefore very
broad, reaching quite small neutrino energies. The relativistic
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effects are hardly visible on the linear scale, except for
the very peak area, where two curves stop overlapping. The
relativistic effects reduce the maximal values of the F = Orate
(by approximately 4%) and the total rate (by approximately
2%) and increase the value of the F =1 rate (by nearly
9%). The changes of the total (integrated) rates are discussed
below.

Of course, a simple comparison of results based on the
NR and NR + RC prescriptions for the single-nucleon current
operator is not sufficient to account for all relativistic effects.
Further relativistic features may be present in the data to
which the nucleon weak form factors are fitted based on
the fully relativistic formula, given for example by Eq. (2.6)
in Ref. [11]. In principle, this relativistic formula could be
used in momentum space calculations but then clearly the
problem of consistence would emerge. So we apply the
popular NR + RC prescription, which should actually do a
good job for the studied capture reaction. Here, contrary to
many kinematics considered in electron scattering on *He,
the magnitude of the three-momentum transfer is smaller than
100 MeV/c, which suggests that 1/M? corrections might be a
good approximation.

In Fig. 3 the same differential rates are shown but they
are calculated with three different types of 3N dynamics.
We display predictions obtained using the PW approximation
[see Eq. (3.7)], results of the calculations that employ only
2N forces (given by the AV18 potentials [21]) to calculate
the initial as well as final 3N states, and finally predictions
based on a consistent treatment of the initial and final states,
taking additionally a 3N force (the Urbana IX [22] potential)
into account. Final-state interactions are very important. They
not only change the PW predictions by a factor of 2 but
also alter the shapes of the curves and their peak positions.
We thus confirm the findings of Refs. [17,20] obtained with
completely different frameworks and much simpler forces.
Like in Ref. [11], we also study the 3N force effects. They
are clearly visible in the peak areas, where the predictions
including the 3N force drop by approximately 20%. These peak
reductions are quite similar to the two-body and three-body
breakup cases studied in Ref. [11] for muon capture on *He.
In these calculations the same single-nucleon current operator
including relativistic corrections is used. Note that the PW
results are obtained with the initial 3N bound state calculated
solely with the 2N forces.

It is interesting to trace back the origin of such large 3N
force effects. To this end in Fig. 4 we display results of four
different calculations with the same single-nucleon current
operator. We can neglect the 3N force in both the 3N bound
and scattering states, include it only in the initial state and only
in the final state, and finally use it consistently in the 3N bound
state and in the 3N continuum. For all the three differential rates
3N force contributions to the final three-neutron scattering
state are very small and do not reach even 1%. Only the
inclusion of the 3N force in the initial bound state is decisive
for the calculations. Therefore in Fig. 4 we see two groups of
curves, each obtained with the same initial bound state.

It is clear that quantities like the differential capture rates
dl'/d E, would be extremely hard to measure. More realistic is
to expect that the capture rates dI"/d E,, (E,, is the final neutron
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FIG. 3. The differential capture rates (F = 0) dI'*=°/dE, (a),
(F =1)drf='/dE, (b), and (total) dT"/d E, (c) for the u~ + *H —
v, +n +n+n process calculated with the single-nucleon current
operator including relativistic corrections and different types of
3N dynamics: (symmetrized) plane wave (dotted curve), with total
omission of the 3N force (dashed curve) and with consistent inclusion
of the 2N and 3N forces (solid curve). The calculations are based
on the AV18 nucleon-nucleon potential [21] and the Urbana IX 3N
force [22].

energy) will be accessed experimentally. Such measured rates
will be in practice averaged over certain intervals of the neutron
energies. To calculate the corresponding theoretical rates we do
not introduce any dedicated kinematics but use the same steps
as required to obtain the total rates according to Eq. (2.28).
Thus we are sure that the calculations of the (averaged)
differential rates (dI"/d E,) are consistent with the calculation
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FIG. 4. The 3N force effects in the differential capture rates
(F=0) dT'*=°/dE, (a), (F=1) dTI'f='/dE, (b), and (total)
dl'/dE, (c) calculated without the 3N force (dash-dotted line),
including the 3N force only in the initial state (dotted line), only in
the final state (dashed line), and with the 3N forces taken consistently
in the initial and final states (solid line). The dash-dotted and dashed
lines overlap. The same is true for the dotted and solid lines.

of the total rate I', where we obtain first the capture rates
dl'/dE, at 36 values of the final neutrino energy, solving for
each of them the corresponding Faddeev-like equation (2.22).
These neutrino energies are distributed with special emphasis
on the region in the vicinity of the maximal neutrino energy.
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FIG. 5. The differential capture rates (F = 0) (dI'*=°/dE,) (top panels), (F = 1) (dI'"='/dE,) (middle panels), and (total) (dT"/dE,)
(bottom panels), for the u~ + *H — v, +n + n + n process averaged over 5-MeV neutron energy bins. The same results are shown on a linear
scale (left panels) and a logarithmic scale (right panels). The predictions are obtained using the full solution of Eq. (2.22). The three overlapping
curves represent results where the energies of nucleon 1 (solid line), nucleon 2 (dashed line), and nucleon 3 (dotted line) are considered.

Therefore we use the same formulas and codes as for the total I"
capture rate, performing integrals over the whole phase space.
However, the contribution to a given neutron energy interval
comes only from the integrand with a proper kinematical
“signature” [11].

This kinematical signature is easy to obtain because the
individual momenta of the three outgoing neutrons can be
evaluated from Egs. (2.25):

PI=—iP+q
P2=—ipy+P— 34 (3.8)
Ps = —3P — P~ 34

Because the outgoing neutrons are identical, we have actually
three possibilities to calculate the final neutron energy: E, =
ﬁp% (i = 1,2,3). This can be used as a nontrivial test of the
final-state antisymmetrization.

In Fig. 5 the capture rates, (dI'"="/dE,), (dT"='/dE,),
and (dT"/dE,), averaged over 5-MeV neutron energy bins are
shown on both a linear and a logarithmic scale. The reason
for that is that the rates change by several orders of magnitude
in the allowed interval of the neutron energy. These results
are obtained with the full inclusion of the 3N force. The three
curves denote the results, where the energies of nucleon 1,
nucleon 2, and nucleon 3 are taken as the neutron energy E,.
The three lines completely overlap, which confirms the proper
antisymmetrization of the final three-neutron states. In these
calculations we use thus 36 E, points, 36 6, points, 36 6,
points, and 36 ¢, points and also 36 values of the magnitude
of the relative p momentum. Note that due to the rotational
invariance of the unpolarized rate, we may choose ¢, = 0.
These numbers of points are sufficient to get smooth curves
for the 5-MeV neutron energy bins. In Fig. 6 we show the same
capture rates as in Fig. 5 but now they are averaged over smaller
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FIG. 6. The same as in Fig. 5 but the capture rates are averaged over 2-MeV neutron energy bins.

2-MeV neutron energy bins. From the wavy character of some
lines (visible on the logarithmic scale) one can infer that an
average over smaller than 5-MeV energy intervals requires a
finer grid of E, points.

We supplement the results presented in Figs. 2-6 by
giving the corresponding values of the integrated capture
rates in Table I, together with earlier theoretical predictions
of Refs. [15-17,20]. From the first two rows of this table it
is clear that final-state interactions taken in the form of 2N
forces enhance the plane-wave results (given in parentheses)
by 34%-38%. This effect is similar for the nonrelativistic
single-nucleon current operator and for the current operator
containing relativistic corrections. The relativistic corrections
reduce the F = 0 rate by approximately 3.4% and raise the
F =1 rate by more than 6%. The effect on the total rate is
weaker: this rate is reduced by approximately 2.6%. (All these
changes are discussed for the Full 2NF results.) Note that this
effect is slightly larger than that for the = + *He — v, + *H
process, for which the total capture rate, calculated with the
AV18 2N potential [21] augmented by the Urbana IX 3N

force [22], is reduced by 1.6%, when the relativistic corrections
are included in the single-nucleon current. This information
was already obtained by one of the authors (L.E.M.), when the
calculations published in Ref. [7] were performed, but it was
not included in the publication. The inclusion of the 3N force
decreases all three rates. This reduction is stronger for the
F = 0 and total rates (approximately 12%) than for the F' = 1
rate (approximately 7.5%). The reduction due to the 3N force is
a common feature of the muon capture on the A = 3 systems.
Already in Ref. [7] it was shown that there is a significant
correlation between the total capture rate for the 1~ + *He —
v, + *H reaction and the A = 3 binding energies.

It is very interesting to notice that much earlier theoretical
predictions agree quite well with our new results. This is true
not only for the plane-wave results but also for the calculations
that consistently used 2N forces in the initial and final 3N
states.

Results of our most advanced approach (the AV 18 nucleon-
nucleon potential augmented by the Urbana IX 3N force
and the single-nucleon current operator containing relativistic
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TABLE L. Capture rates (I') forthe u~ +3H — v, +n+n+n
process calculated with the AV18 [21] nucleon-nucleon potential
and the nonrelativistic single-nucleon current operator (Full 2NF),
including relativistic corrections in the single-nucleon current oper-
ator (Full 2NF RC) and additionally employing the Urbana IX [22]
3N force (Full 2NF + 3NF RC). Also predictions obtained using
the plane-wave approximation are shown in parentheses. Earlier
theoretical predictions, obtained without a 3N force, are displayed
in the same way. For the information about the various 2N forces
(YAM, RSC, SSC, V, EH, S1, and S2) used in Refs. [15-17,20] we
refer the reader to the corresponding articles.

Capture rate I in s™!

F=0 F=1 Total
Full 2NF 138.1 (100.0) 3.97 (2.97) 37.5 (27.2)
Full 2NF RC 133.6 (97.0) 4.21 (3.12) 36.5 (26.6)
Full 2NF + 3NF RC 118.7 3.92 32.6
Earlier theoretical predictions:
Ref. [15] YAM 9.5(6.1)
Ref. [16] RSC (23.6)
RSCRC (28.2)
SSC (23.0)
SSCRC (27.6)
Ref. [17] SSC 122.8 (90.6) 3.58 (2.69) 33.4 (24.7)
SSCRC 137.5 (102.0) 3.66 (2.78) 37.1 (27.6)
Ref. [20] V 35.7 (22.3)
EH 29.9 (19.7)
S1 33.1(20.8)
S2 35.5(21.9)

corrections) are given in the third row of Table I and read
=0 =118.7s 1, =1 =3.92s ! and " = 32.6s .

IV. SUMMARY AND CONCLUSIONS

This article constitutes an important step towards a consis-
tent framework for calculations of all muon capture processes
on the deuteron and A = 3 nuclei. This requires that the
initial and final nuclear states are calculated with the same
Hamiltonian and that the weak-current operator is fully
consistent with the nuclear forces. Results of such calculations
can be then compared with precise experimental data to
improve our understanding of muon capture and other weak
reactions.

In the present article we study the u~ +°H — v, +
n +n +n process in the framework close to the potential
model approach of Ref. [4] but with the single-nucleon
current operator. This is a continuation of our work from

PHYSICAL REVIEW C 94, 034002 (2016)

Ref. [11], where other capture reactions, u~ + °H — v, +
n+n,,LL_+3He—> UM+3H,,LL_ +3He — v, +n-+d,and
no+ ‘He — v, +n-+n+ p, were described in the same
momentum space framework. We use the results of Ref. [11] on
the partial-wave decomposition of the single-nucleon current
operator, the number of partial wave states necessary to reach
convergence of the results, and the simple method to obtain
the averaged capture rates from the calculations of the total
rate. It is quite understandable that also for this reaction the
nonrelativistic kinematics can be safely used.

Using for the first time modern semiphenomenological
2N and 3N forces, we give predictions for the differential
dU'/dE, capture rates as well as for the corresponding
integrated capture rates I" and the averaged (dI"/d E,) capture
rates, taking additionally into account the F =0 and F = 1
hyperfine states of the muon-tritium atom. Our best numbers
(from the calculations employing the AV18 2N potential and
the Urbana IX 3N force and using the single-nucleon cur-
rent operator containing relativistic corrections) are 'F=0 =
118.7s 1, =1 =392s ! and " =32.6s .

Our predictions obtained with the 2N force alone are in a
rather good agreement with much older theoretical predictions
from Refs. [15-17,20]. Our results cannot be confronted with
experimental data at the moment. It is clear that a measurement
of the reaction considered in this article would be extremely
difficult. However, due to the presence of three neutrons in
the final state and their two- and three-body interactions,
theoretical and experimental investigations of this reaction are
very interesting and important.

We are well aware that the full understanding of the
muon capture processes requires the inclusion of at least
2N contributions to the nuclear current operators. First steps
in this direction were made in Ref. [11]. We do hope that,
even in the present shape, our predictions will serve as an
important benchmark. In the near future we plan to perform
more complete calculations using the locally regularized
chiral 2N potential [27,28], supplemented by the consistently
regularized chiral 3N forces [29,30] and electroweak-current
operators [31].
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