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I. INTRODUCTION

Muon capture reactions on light nuclei have been studied

intensively, both experimentally and theoretically, for many

years. Earlier achievements are summarized in Refs. [1–3].

More recent theoretical work has focused on the µ− +
2H → νµ + n + n and µ− + 3He → νµ + 3H reactions and is

described in Refs. [4–6]. The calculation of Ref. [4] was per-

formed both in the phenomenological and the “hybrid” chiral

effective field theory (χEFT) approach, initiated in Ref. [7].

It was based on Hamiltonians comprising two-nucleon (2N)

and three-nucleon (3N) potentials. The weak-current operator

included not only the single-nucleon contribution but also

meson-exchange currents (MECs) as well as currents arising

from the �-isobar excitation [8]. Later these two reactions

were studied in a “nonhybrid” χEFT approach [9,10], where

both potentials and currents were derived consistently from

χEFT. The results obtained within different approaches agree

with each other and describe the available experimental data

well.

In Ref. [11] we joined our expertise: from the momentum

space treatment of electromagnetic processes [12,13] and

from the potential model approach developed in Ref. [4]. We

found that new results for the µ− + 2H → νµ + n + n and

µ− + 3He → νµ + 3H reactions calculated in the momentum

space were in good agreement with those of Ref. [4], which had

been obtained using the hyperspherical harmonics formalism.

Thus we could take the first step to establish a theoretical

framework that can be extended to all the A � 3 muon capture

reactions, including three-body breakup of the A = 3 systems.

By using the Faddeev equation approach, we provided, for the

first time, predictions for the total and differential capture rates

of the µ− + 3He → νµ + n + d and µ− + 3He → νµ + n +

n + p breakup reactions, calculated with the full inclusion of

final-state 2N and 3N interactions. Although we incorporated

selected MECs in the momentum space treatment of the

µ− + 2H → νµ + n + n and µ− + 3He → νµ + 3H capture

reactions, in the calculations of the breakup channels in muon

capture on 3He we restricted ourselves to the single-nucleon

current, with the weak nucleon form factors from Ref. [14].

Muon capture on 3H has attracted less attention. This

reaction, with all uncharged particles in the final state, would

be very difficult to measure because of the radioactivity of

the target and due to the mesomolecular complications [1].

The µ− + 3H → νµ + n + n + n capture process presents,

however, interesting features that make this process worth

investigating: it allows one to study the neutron-neutron

interaction and the three-neutron force acting exclusively in the

total isospin T = 3/2 state. Moreover, its study is the natural

next step after the µ− + 3He → νµ + n + n + p reaction has

been considered. Theoretical studies of muon capture on 3H
were started in the 1970s [15–17]. Those early calculations

were performed predominantly in configuration space, using

the 2N potential models available at that time. In Ref. [15] a

separable potential of the Yamaguchi type was employed in

the calculations based on Amado’s method [18] and thus the

final-state interaction (FSI) was taken into account. Actually

that article focused on the three different muon capture

reactions in 3He and the information about the capture rate

on 3H was extracted from the total isospin T = 3/2 rate

calculated for the three-body breakup of 3He. The FSI effects

and meson-exchange currents were neglected in Ref. [16] but

some observations about the reaction mechanism proved to

be correct. In particular the authors predicted that inclusion

of the FSI would lead to an enhancement of the muon

capture rate. A better calculation scheme was introduced in
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Ref. [17]. The authors presented a general method to deal

with transitions from a 3N bound state to scattering states

caused by a weakly acting Hamiltonian and applied it to

muon capture on 3H. They obtained results not only under

the plane wave (PW) approximation but also including 2N

interactions (in the form of the supersoft-core nucleon-nucleon

potential [19]) in the three-neutron continuum. More recent

theoretical investigations were conducted by Dzhibuti and

Kezerashvili [20]; they used the method of hyperspherical

functions in coordinate space and employed four different

central potentials in their calculations. Like in Ref. [17],

they found FSI effects to be very important. Their results

were sensitive to the form of the 2N potential used in the

calculations. Table I in Ref. [20] nicely summarized all the

early theoretical predictions.

In this article we extend our investigations of the µ− +
3He → νµ + n + d and µ− + 3He → νµ + n + n + p cap-

ture reactions presented in Ref. [11] to describe also the

µ− + 3H → νµ + n + n + n process. This reaction is studied

under full inclusion of final-state interactions, employing

the AV18 2N potential [21] alone or together with the

Urbana IX 3N force [22]. Our results are based on the

single-nucleon weak-current operator including relativistic

corrections [11].

In principle the total capture rates on 3H and 3He in the

full breakup channel for the total 3N isospin T = 3/2 are

related by an isospin transformation. Therefore, we could

use results given already in Ref. [11]. A similar situation

was found for the response functions in inclusive electron

scattering on 3H and 3He (see, for example, Refs. [12,23]).

The isospin relation holds exactly if one assumes that

the proton-neutron or (strong) proton-proton interactions are

the same. Nowadays it seems rather indispensable to take the

charge independence breaking, at least on the level of 2N

interactions, into account. We do not think that using only the

proton-neutron 2N potential in the study of the total muon

capture rate on 3He would have made a big difference but we

included the neutron-neutron (and proton-proton) interactions

in the 3N continuum to be consistent with the 3N bound-state

calculations. Because presently our calculations do not require

large computational resources, we can afford new calculations

including different 2N interactions and do not rely on the

isospin relation. Moreover, we follow the historical path and

get the total capture rate by explicit integrations over the

whole three-neutron phase space, which allows us to show also

differential capture rates. This information could be potentially

useful for benchmark calculations and (hopefully) for future

experimental studies.

The article is organized in the following way. In Sec. II

we briefly introduce the elements of our formalism. Our

main results are shown in Sec. III, where we discuss various

predictions obtained with different dynamics for the µ− +
3H → νµ + n + n + n reaction. We show our results for the

differential and integrated rates and compare them with earlier

theoretical predictions. To the best of our knowledge, we are

for the first time able to include final-state interactions based

on modern 2N and 3N forces in a manner consistent with the

bound-state calculations. In all cases we show separate results

for the capture rates from the two hyperfine states, F = 0 and

F = 1, of the muon-tritium atom. Finally, Sec. IV contains

concluding remarks.

II. THEORETICAL FORMALISM

For the muon capture process one assumes that the initial

state |i〉 consists of the atomic K-shell muon wave function

|ψmµ〉 with the muon spin projection mµ and the initial

nucleus state with the three-momentum Pi (and the spin

projection mi):

|i〉 = |ψmµ〉|�iPimi〉. (2.1)

In the final state, |f 〉, one encounters the muon neutrino (with

the three-momentum pν and the spin projection mν), as well

as the final nuclear state with the total three-momentum Pf

and the set of spin projections mf :

|f 〉 = |νµpνmν〉 |�f Pf mf 〉. (2.2)

The transition from the initial to the final state is driven by the

Fermi form of the interaction Lagrangian (see, for example,

Ref. [24]) and leads to a contraction of the leptonic (Lλ) and

nuclear (N λ) parts in the S-matrix element Sf i [25]:

Sf i = i(2π )4δ4(P ′ − P )
G
√

2
Lλ N

λ, (2.3)

where G = 1.149 39 × 10−5 GeV−2 is the Fermi constant

(taken from Ref. [4]) and P (P ′) is the total initial (final)

four-momentum. The well-known leptonic matrix element

Lλ =
1

(2π )3
ū(pν,mν)γλ(1 − γ5)u(pµ,mµ) ≡

1

(2π )3
Lλ

(2.4)

is given in terms of the Dirac matrices and spinors.

The nuclear part is the essential ingredient of the formalism

and is written as [12,25]

N λ =
1

(2π )3
〈�f Pf mf |jλ

w|�iPimi〉 ≡
1

(2π )3
Nλ. (2.5)

It is a matrix element of the nuclear weak-current operator jλ
w

between the initial and final nuclear states. In this article we

omit many-nucleon contributions to jλ
w and restrict ourselves

to two forms of the single-nucleon current operator. The first

one, jλ
w = jλ

NR, is strictly nonrelativistic, with the following

momentum-space matrix elements of its time and space

components [25]:

〈p′|j 0
NR|p〉 =

(

gV
1 + gA

1

σ · (p + p′)

2M

)

τ− (2.6)

and

〈p′|jNR|p〉

=
(

gV
1

p + p′

2M
−

1

2M

(

gV
1 − 2MgV

2

)

iσ × (p − p′)

+ gA
1 σ + gA

2 (p − p′)
σ · (p − p′)

2M

)

τ−, (2.7)

where M is the mean value of the proton (Mp) and neutron

(Mn) masses, M ≡ 1
2
(Mp + Mn), τ− ≡ (τx − iτy)/2 is the
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isospin lowering operator, σ is a vector of Pauli spin matrices,

and p (p′) is the initial (final) nucleon momentum. Here we

keep only terms up to 1/M .

The second form of jλ
w, jλ

NR+RC, contains relativistic

1/M2 corrections, which leads to additional terms in the

corresponding matrix elements [11]:

〈p′|j 0
NR+RC|p〉 =

(

gV
1 −

(

gV
1 − 4MgV

2

) (p′ − p)2

8M2
+

(

gV
1 − 4MgV

2

)

i
(p′ × p) · σ

4M2

+ gA
1

σ · (p + p′)

2M
+ gA

2

(p′ 2 − p2)

4M2
σ · (p′ − p)

)

τ− (2.8)

and

〈p′|jNR+RC|p〉 =
[

gV
1

p + p′

2M
−

1

2M

(

gV
1 − 2MgV

2

)

iσ ×
(

p − p′) + gA
1

(

1 −
(p + p′)2

8M2

)

σ

+
gA

1

4M2
[(p · σ )p′ + (p′ · σ )p + i(p × p′)] + gA

2 (p − p′)
σ · (p − p′)

2M

]

τ−. (2.9)

This form of the nuclear weak-current operator is very close to the one used in Ref. [4]; see Ref. [11] for details. Note that the

weak nucleon form factors gV
1 , gV

2 , gA
1 , and gA

2 are usually expressed in terms of the isovector components of the electric (GV
E)

and magnetic (GV
M ) Sachs form factors as well as the axial (GA) and pseudoscalar (GP ) form factors:

GV
E = gV

1 , (2.10)

GV
M = gV

1 − 2MgV
2 , (2.11)

GA = −gA
1 , (2.12)

GP = −gA
2 mµ. (2.13)

Like in Ref. [11], in this article we also employ the form factors from Ref. [14].

The essential part of the decay rate formula stems from the contraction of the leptonic and nuclear matrix elements. Note that,

contrary to what was erroneously stated in Ref. [11], we use indeed the same notation as Bjorken and Drell [26] but with the

different spinor normalization. To be explicit, we use the following definitions:

u(p,s) ≡
√

E + m

2 E

(

χs

p·σ
E+m

χs

)

, (2.14)

which means that u†u = 1 and ūu = m
E

, where m is the particle mass and E ≡
√

m2 + p2 . We assume of course that the

two-component spinor χs is normalized to yield χ
†
s χs = 1.

Because we deal with a specific muon capture reaction, we switch from the general notation to the one where the relevant

spin projections are given explicitly:

Lλ ≡ Lλ(mν,mµ),

Nλ ≡ Nλ(m1,m2,m3,m3H), (2.15)

and we use in the following the minus one spherical component of N: N−1 = 1√
2
(Nx − iNy). With these definitions, assuming

additionally that p̂ν = −ẑ and that the initial muon is at rest, we easily evaluate the following for the unpolarized case:

|T |2 ≡
1

4

∑

m3H
,mµ

∑

m1,m2,m3,mν

|Lλ(mν,mµ)Nλ(m1,m2,m3,m3H)|2

=
1

2

∑

m3H

∑

m1,m2,m3

(|N0(m1,m2,m3,m3H)|2 + |Nz(m1,m2,m3,m3H)|2

+ 2|N−1(m1,m2,m3,m3H)|2 + 2Re{N0(m1,m2,m3,m3H)[Nz(m1,m2,m3,m3H)]∗}). (2.16)

This form is not appropriate when we want to separately calculate capture rates from two hyperfine states, F = 0 or F = 1, of

the muon-tritium atom. In such a case we introduce the coupling between the triton and muon spin via standard Clebsch-Gordan

coefficients c( 1
2
, 1

2
,F ; mµ,m3H,mF ) and obtain

|T |2F ≡
1

2F + 1

∑

mF

∑

m1,m2,m3,mν

∣

∣

∣

∣

∣

∣

∑

mµ,m3H

c

(

1

2
,
1

2
,F ; mµ,m3H,mF

)

Lλ(mν,mµ)Nλ(m1,m2,m3,m3H)

∣

∣

∣

∣

∣

∣

2

. (2.17)
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The explicit formulas for F = 0 and F = 1 read

|T |2F=0 =
∑

m1,m2,m3

∣

∣

∣

∣

N0

(

m1,m2,m3,m3H = −
1

2

)

−
√

2N−1

(

m1,m2,m3,m3H =
1

2

)

+ Nz

(

m1,m2,m3,m3H = −
1

2

)
∣

∣

∣

∣

2

(2.18)

and

|T |2F=1 =
2

3

∑

m1,m2,m3

(
∣

∣

∣

∣

N0

(

m1,m2,m3,m3H =
1

2

)
∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

N−1

(

m1,m2,m3,m3H = −
1

2

)
∣

∣

∣

∣

2

+
∣

∣

∣

∣

N−1

(

m1,m2,m3,m3H =
1

2

)
∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

N0

(

m1,m2,m3,m3H = −
1

2

)

+ Nz

(

m1,m2,m3,m3H = −
1

2

)
∣

∣

∣

∣

2

+
∣

∣

∣

∣

Nz

(

m1,m2,m3,m3H =
1

2

)
∣

∣

∣

∣

2

+ 2Re

{

N0

(

m1,m2,m3,m3H =
1

2

)[

Nz

(

m1,m2,m3,m3H =
1

2

)]∗}

+
√

2Re

{

N0

(

m1,m2,m3,m3H = −
1

2

)[

N−1

(

m1,m2,m3,m3H =
1

2

])∗}

+
√

2Re

{

Nz

(

m1,m2,m3,m3H = −
1

2

)[

N−1

(

m1,m2,m3,m3H =
1

2

)]∗})

. (2.19)

These three quantities, |T |2, |T |2F=0, and |T |2F=1 are not

independent but obey the obvious relation

|T |2 = 1
4
|T |2F=0 + 3

4
|T |2F=1. (2.20)

The crucial matrix elements

Nλ(m1,m2,m3,m3H) ≡ 〈�(−)
nnnPf = −pνm1m2m3|jλ

w|�3H

Pi = 0m3H〉 (2.21)

are calculated in two steps [12,13]. First we solve a Faddeev-

like equation for the auxiliary state |Uλ〉 for each considered

neutrino energy:

|Uλ〉 =
[

tG0 + 1
2
(1 + P )V

(1)
4 G0(1 + tG0)

]

(1 + P )jλ
w|�3H〉

+
[

tG0P + 1
2
(1 + P )V

(1)
4 G0(1 + tG0)P

]

|Uλ〉,
(2.22)

where V
(1)

4 is a part of the 3N force symmetrical under the

exchange of nucleons 2 and 3, G0 is the free 3N propagator,

and t is the 2N t operator acting in the (2,3) subspace. Further,

P is the permutation operator built from the transpositions Pij

exchanging nucleons i and j :

P = P12P23 + P13P23. (2.23)

In the second step the nuclear matrix elements are calculated

by quadratures:

Nλ(m1,m2,m3,m3H)

= 〈φnnnpqm1m2m3|(1 + P )jλ
w|�3H〉

+〈φnnnpqm1m2m3|tG0(1 + P )jλ
w|�3H〉

+〈φnnnpqm1m2m3|P |Uλ〉
+〈φnnnpqm1m2m3|tG0P |Uλ〉. (2.24)

Here |φnnnpqm1m2m3〉 is a product state of Jacobi momenta p

and q describing two free motions in the three-neutron system:

p ≡ 1
2
(p2 − p3),

q ≡ 2
3

(

p1 − 1
2
(p2 + p3)

)

= p1 +
1

3
pν . (2.25)

Equations (2.22) and (2.24) simplify significantly when

V
(1)

4 = 0 [13]. In this case one obtains

|Uλ〉 = tG0(1 + P )jλ
w|�3H〉 + tG0P |Uλ〉 (2.26)

and

Nλ(m1,m2,m3,m3H)〈φnnnpqm1m2m3|(1 + P )jλ
w|�3H〉

+〈φnnn p q m1 m2 m3 | (1 + P )|Uλ〉 .

(2.27)

Taking all factors into account, using the rotational symme-

tries of the unpolarized case and evaluating the phase-space

factor in terms of the relative Jacobi momenta p and q,

we arrive at the final expression for the total capture rate for

the µ− + 3H → νµ + n + n + n reaction:

Ŵ =
3

2
G2 1

(2π )2
R

(M ′
3H

α)3

π
4π

×
∫ Emax,nnn

ν

0

dEνE
2
ν

1

3

∫ π

0

dθq sin θq2π

∫ π

0

dθp sin θp

×
∫ 2π

0

dφp

∫ pmax

0

dpp2 2

3
Mq|T |2, (2.28)

where the factor
(M ′

3H
α )

3

π
stems from the K-shell atomic wave

function, M ′
3H

= M3H Mµ

M3H+Mµ
, and α ≈ 1

137
is the fine-structure

constant. The value of q ≡ |q| is defined through Eq. (2.29)

below. The additional factor R can account for the finite

volume of the 3H charge but we take R = 1 in the present
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calculations. Note that the current operator of nucleon 1 is

used when evaluating |T |2.

To fix the upper limit of the integration over p in Eq. (2.28),

we express the energy conservation in terms of the Jacobi

momenta:

Mµ + M3H ≈ Eν + 3M +
p 2

M
+

3

4

q 2

M
+

1

6

E2
ν

M
. (2.29)

Like for the µ− + 2H → νµ + n + n reaction studied in

Ref. [11], we can consider the hyperfine states in the muon-

tritium atom, replacing |T |2 by |T |2F=0 or |T |2F=1.

III. RESULTS FOR THE µ
−

+
3
H → νµ + n + n + n

REACTION

We start with the kinematics of the µ− + 3H → νµ + n +
n + n reaction, which is formulated exactly in the same way

as in Ref. [11] for the µ− + 3He → νµ + n + n + p process.

The relativistic (rel) and nonrelativistic (nrl) maximal neutrino

energies for this three-body capture of the muon atom are

evaluated as

(

Emax,nnn
ν

)rel =
M3H

2 + 2M3HMµ + Mµ
2 − 9Mn

2

2(M3H + Mµ)

= 94.3078 MeV, (3.1)
(

Emax,nnn
ν

)nrl =
√

3Mn (2M3H + 2Mµ − 3Mn) − 3Mn

= 94.3073 MeV. (3.2)

The kinematically allowed region in the Eν-En plane for

the breakup of 3H is shown in Fig. 1. We show the curves

based on the relativistic and nonrelativistic kinematics. They

essentially overlap except for very small neutrino energies. Up

to a certain Eν value, which we denote by E2sol
ν , the minimal

neutron kinetic energy is zero. The minimal neutron kinetic

energy is greater than zero for Eν > E2sol
ν . Even this very

detailed feature of the kinematical domain can be calculated

nonrelativistically with high accuracy (see also the inset in

 0
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E
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M
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 93.5  94  94.5

νE
2sol

FIG. 1. The kinematically allowed region in the Eν-En plane

calculated relativistically (solid curve) and nonrelativistically (dashed

curve) for the µ− + 3H → νµ + n + n + n process.

Fig. 1). The values of E2sol
ν based on the relativistic kinematics,

(

E2sol
ν

)rel =
(M3H + Mµ)(M3H + Mµ − 2Mn) − 3Mn

2

2(M3H + Mµ − Mn)
,

(3.3)

and nonrelativistic kinematics,

(

E2sol
ν

)nrl = 2
(

√

M3HMn + MµMn − 2Mn
2 − Mn

)

, (3.4)

yield very similar numerical values, 93.5574 and

93.5561 MeV, respectively. This supports the notion that

predictions based on the nonrelativistic 3N dynamics should

be valid for the considered capture process.

The solutions of Eqs. (2.22) and (2.26) as well as the

evaluations of the nuclear matrix elements in Eqs. (2.24)

and in Eqs. (2.27) are obtained using partial-wave de-

composition (PWD). We employ our standard 3N basis

|pqᾱ JmJ ; T mT 〉 [12], where p and q are magnitudes of the

relative Jacobi momenta and ᾱ is a set of discrete quantum

numbers. Note that the |pqᾱJmJ ; T mT 〉 states are already

antisymmetrized in the (2,3) subsystem. The initial 3N bound

state is therefore represented as

|�3Hm3H 〉 =
∑

ᾱb

∫

dpp2

∫

dqq2

∣

∣

∣

∣

pqᾱb

1

2
m3H;

1

2
,−

1

2

〉

×φᾱb
(p,q). (3.5)

In our calculation of the 3N bound state we use 34 (20)

points for integration over p (q) and 34 partial-wave states

corresponding to the 2N subsystem total angular momentum

j � 4.

In Ref. [11] we checked that it is sufficient to perform

calculations in the 3N continuum with j � 3. The convergence

with respect to the total 3N angular momentum J is also very

rapid and in the present calculations we include all the 3N

partial-wave states up to Jmax = 9
2
. The first building block

in our scheme requires PWD of the single-nucleon current

operator:

〈pqᾱJmJ ; T mT Pf |jw(1)|�3HPi = 0m3H〉. (3.6)

This step is described in detail in Ref. [11].

We refer the reader to Ref. [12] for the detailed definitions

of various 3N dynamics. Here we only note that our PW

predictions shown in the following for the sake of comparison

with the earlier calculations are obtained with

Nλ(m1,m2,m3,m3H) = 〈φnnnpqm1m2m3|(1 + P )jλ
w|�3H〉.

(3.7)

We start the discussion of our predictions with Fig. 2,

where the differential capture rates dŴ/dEν are shown for

the considered µ− + 3H → νµ + n + n + n capture reaction

and effects of the relativistic corrections in the single-nucleon

current operator are studied. The results are calculated with the

2N forces only. Although the rates are not independent [see

Eq. (2.20)], we display all three quantities. Clearly, the values

for F = 0 are much bigger than those for F = 1. Because

the F = 0 rate dominates, the F = 0 [Fig. 2(a)] and total

[Fig. 2(c)] rates change with the neutrino energy in a very

similar way. They rise very slowly for small neutrino energies
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FIG. 2. The differential capture rates (F = 0) dŴF=0/dEν (a),

(F = 1) dŴF=1/dEν (b), and (total) dŴ/dEν (c) for the µ− + 3H →
νµ + n + n + n process calculated with the single-nucleon current

operator without (dashed line) and with (solid line) relativistic

corrections. The calculations are based on the AV18 nucleon-nucleon

potential [21] only.

and show a strong maximum in the vicinity of the maximal

neutrino energy, where the phase-space factor reduces all the

differential rates to zero. The behavior of the F = 1 rate

is different. Its values grow much faster with the neutrino

energy and the corresponding maximum is therefore very

broad, reaching quite small neutrino energies. The relativistic

effects are hardly visible on the linear scale, except for

the very peak area, where two curves stop overlapping. The

relativistic effects reduce the maximal values of the F = 0 rate

(by approximately 4%) and the total rate (by approximately

2%) and increase the value of the F = 1 rate (by nearly

9%). The changes of the total (integrated) rates are discussed

below.

Of course, a simple comparison of results based on the

NR and NR + RC prescriptions for the single-nucleon current

operator is not sufficient to account for all relativistic effects.

Further relativistic features may be present in the data to

which the nucleon weak form factors are fitted based on

the fully relativistic formula, given for example by Eq. (2.6)

in Ref. [11]. In principle, this relativistic formula could be

used in momentum space calculations but then clearly the

problem of consistence would emerge. So we apply the

popular NR + RC prescription, which should actually do a

good job for the studied capture reaction. Here, contrary to

many kinematics considered in electron scattering on 3He,

the magnitude of the three-momentum transfer is smaller than

100 MeV/c, which suggests that 1/M2 corrections might be a

good approximation.

In Fig. 3 the same differential rates are shown but they

are calculated with three different types of 3N dynamics.

We display predictions obtained using the PW approximation

[see Eq. (3.7)], results of the calculations that employ only

2N forces (given by the AV18 potentials [21]) to calculate

the initial as well as final 3N states, and finally predictions

based on a consistent treatment of the initial and final states,

taking additionally a 3N force (the Urbana IX [22] potential)

into account. Final-state interactions are very important. They

not only change the PW predictions by a factor of 2 but

also alter the shapes of the curves and their peak positions.

We thus confirm the findings of Refs. [17,20] obtained with

completely different frameworks and much simpler forces.

Like in Ref. [11], we also study the 3N force effects. They

are clearly visible in the peak areas, where the predictions

including the 3N force drop by approximately 20%. These peak

reductions are quite similar to the two-body and three-body

breakup cases studied in Ref. [11] for muon capture on 3He.

In these calculations the same single-nucleon current operator

including relativistic corrections is used. Note that the PW

results are obtained with the initial 3N bound state calculated

solely with the 2N forces.

It is interesting to trace back the origin of such large 3N

force effects. To this end in Fig. 4 we display results of four

different calculations with the same single-nucleon current

operator. We can neglect the 3N force in both the 3N bound

and scattering states, include it only in the initial state and only

in the final state, and finally use it consistently in the 3N bound

state and in the 3N continuum. For all the three differential rates

3N force contributions to the final three-neutron scattering

state are very small and do not reach even 1%. Only the

inclusion of the 3N force in the initial bound state is decisive

for the calculations. Therefore in Fig. 4 we see two groups of

curves, each obtained with the same initial bound state.

It is clear that quantities like the differential capture rates

dŴ/dEν would be extremely hard to measure. More realistic is

to expect that the capture rates dŴ/dEn (En is the final neutron
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FIG. 3. The differential capture rates (F = 0) dŴF=0/dEν (a),

(F = 1) dŴF=1/dEν (b), and (total) dŴ/dEν (c) for the µ− + 3H →
νµ + n + n + n process calculated with the single-nucleon current

operator including relativistic corrections and different types of

3N dynamics: (symmetrized) plane wave (dotted curve), with total

omission of the 3N force (dashed curve) and with consistent inclusion

of the 2N and 3N forces (solid curve). The calculations are based

on the AV18 nucleon-nucleon potential [21] and the Urbana IX 3N

force [22].

energy) will be accessed experimentally. Such measured rates

will be in practice averaged over certain intervals of the neutron

energies. To calculate the corresponding theoretical rates we do

not introduce any dedicated kinematics but use the same steps

as required to obtain the total rates according to Eq. (2.28).

Thus we are sure that the calculations of the (averaged)

differential rates 〈dŴ/dEn〉 are consistent with the calculation
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FIG. 4. The 3N force effects in the differential capture rates

(F = 0) dŴF=0/dEν (a), (F = 1) dŴF=1/dEν (b), and (total)

dŴ/dEν (c) calculated without the 3N force (dash-dotted line),

including the 3N force only in the initial state (dotted line), only in

the final state (dashed line), and with the 3N forces taken consistently

in the initial and final states (solid line). The dash-dotted and dashed

lines overlap. The same is true for the dotted and solid lines.

of the total rate Ŵ, where we obtain first the capture rates

dŴ/dEν at 36 values of the final neutrino energy, solving for

each of them the corresponding Faddeev-like equation (2.22).

These neutrino energies are distributed with special emphasis

on the region in the vicinity of the maximal neutrino energy.
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FIG. 5. The differential capture rates (F = 0) 〈dŴF=0/dEn〉 (top panels), (F = 1) 〈dŴF=1/dEn〉 (middle panels), and (total) 〈dŴ/dEn〉
(bottom panels), for the µ− + 3H → νµ + n + n + n process averaged over 5-MeV neutron energy bins. The same results are shown on a linear

scale (left panels) and a logarithmic scale (right panels). The predictions are obtained using the full solution of Eq. (2.22). The three overlapping

curves represent results where the energies of nucleon 1 (solid line), nucleon 2 (dashed line), and nucleon 3 (dotted line) are considered.

Therefore we use the same formulas and codes as for the total Ŵ

capture rate, performing integrals over the whole phase space.

However, the contribution to a given neutron energy interval

comes only from the integrand with a proper kinematical

“signature” [11].

This kinematical signature is easy to obtain because the

individual momenta of the three outgoing neutrons can be

evaluated from Eqs. (2.25):

p1 = − 1
3
pν + q,

p2 = − 1
3
pν + p − 1

2
q, (3.8)

p3 = − 1
3
pν − p − 1

2
q.

Because the outgoing neutrons are identical, we have actually

three possibilities to calculate the final neutron energy: En =
1

2M
p2

i (i = 1,2,3). This can be used as a nontrivial test of the

final-state antisymmetrization.

In Fig. 5 the capture rates, 〈dŴF=0/dEn〉, 〈dŴF=1/dEn〉,
and 〈dŴ/dEn〉, averaged over 5-MeV neutron energy bins are

shown on both a linear and a logarithmic scale. The reason

for that is that the rates change by several orders of magnitude

in the allowed interval of the neutron energy. These results

are obtained with the full inclusion of the 3N force. The three

curves denote the results, where the energies of nucleon 1,

nucleon 2, and nucleon 3 are taken as the neutron energy En.

The three lines completely overlap, which confirms the proper

antisymmetrization of the final three-neutron states. In these

calculations we use thus 36 Eν points, 36 θq points, 36 θp

points, and 36 φp points and also 36 values of the magnitude

of the relative p momentum. Note that due to the rotational

invariance of the unpolarized rate, we may choose φq = 0.

These numbers of points are sufficient to get smooth curves

for the 5-MeV neutron energy bins. In Fig. 6 we show the same

capture rates as in Fig. 5 but now they are averaged over smaller
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FIG. 6. The same as in Fig. 5 but the capture rates are averaged over 2-MeV neutron energy bins.

2-MeV neutron energy bins. From the wavy character of some

lines (visible on the logarithmic scale) one can infer that an

average over smaller than 5-MeV energy intervals requires a

finer grid of Eν points.

We supplement the results presented in Figs. 2–6 by

giving the corresponding values of the integrated capture

rates in Table I, together with earlier theoretical predictions

of Refs. [15–17,20]. From the first two rows of this table it

is clear that final-state interactions taken in the form of 2N

forces enhance the plane-wave results (given in parentheses)

by 34%–38%. This effect is similar for the nonrelativistic

single-nucleon current operator and for the current operator

containing relativistic corrections. The relativistic corrections

reduce the F = 0 rate by approximately 3.4% and raise the

F = 1 rate by more than 6%. The effect on the total rate is

weaker: this rate is reduced by approximately 2.6%. (All these

changes are discussed for the Full 2NF results.) Note that this

effect is slightly larger than that for the µ− + 3He → νµ + 3H
process, for which the total capture rate, calculated with the

AV18 2N potential [21] augmented by the Urbana IX 3N

force [22], is reduced by 1.6%, when the relativistic corrections

are included in the single-nucleon current. This information

was already obtained by one of the authors (L.E.M.), when the

calculations published in Ref. [7] were performed, but it was

not included in the publication. The inclusion of the 3N force

decreases all three rates. This reduction is stronger for the

F = 0 and total rates (approximately 12%) than for the F = 1

rate (approximately 7.5%). The reduction due to the 3N force is

a common feature of the muon capture on the A = 3 systems.

Already in Ref. [7] it was shown that there is a significant

correlation between the total capture rate for the µ− + 3He →
νµ + 3H reaction and the A = 3 binding energies.

It is very interesting to notice that much earlier theoretical

predictions agree quite well with our new results. This is true

not only for the plane-wave results but also for the calculations

that consistently used 2N forces in the initial and final 3N

states.

Results of our most advanced approach (the AV18 nucleon-

nucleon potential augmented by the Urbana IX 3N force

and the single-nucleon current operator containing relativistic
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TABLE I. Capture rates (Ŵ) for the µ− + 3H → νµ + n + n + n

process calculated with the AV18 [21] nucleon-nucleon potential

and the nonrelativistic single-nucleon current operator (Full 2NF),

including relativistic corrections in the single-nucleon current oper-

ator (Full 2NF RC) and additionally employing the Urbana IX [22]

3N force (Full 2NF + 3NF RC). Also predictions obtained using

the plane-wave approximation are shown in parentheses. Earlier

theoretical predictions, obtained without a 3N force, are displayed

in the same way. For the information about the various 2N forces

(YAM, RSC, SSC, V, EH, S1, and S2) used in Refs. [15–17,20] we

refer the reader to the corresponding articles.

Capture rate Ŵ in s−1

F = 0 F = 1 Total

Full 2NF 138.1 (100.0) 3.97 (2.97) 37.5 (27.2)

Full 2NF RC 133.6 (97.0) 4.21 (3.12) 36.5 (26.6)

Full 2NF + 3NF RC 118.7 3.92 32.6

Earlier theoretical predictions:

Ref. [15] YAM 9.5 (6.1)

Ref. [16] RSC (23.6)

RSC RC (28.2)

SSC (23.0)

SSC RC (27.6)

Ref. [17] SSC 122.8 (90.6) 3.58 (2.69) 33.4 (24.7)

SSC RC 137.5 (102.0) 3.66 (2.78) 37.1 (27.6)

Ref. [20] V 35.7 (22.3)

EH 29.9 (19.7)

S1 33.1 (20.8)

S2 35.5 (21.9)

corrections) are given in the third row of Table I and read

ŴF=0 = 118.7 s−1, ŴF=1 = 3.92 s−1, and Ŵ = 32.6 s−1.

IV. SUMMARY AND CONCLUSIONS

This article constitutes an important step towards a consis-

tent framework for calculations of all muon capture processes

on the deuteron and A = 3 nuclei. This requires that the

initial and final nuclear states are calculated with the same

Hamiltonian and that the weak-current operator is fully

consistent with the nuclear forces. Results of such calculations

can be then compared with precise experimental data to

improve our understanding of muon capture and other weak

reactions.

In the present article we study the µ− + 3H → νµ +
n + n + n process in the framework close to the potential

model approach of Ref. [4] but with the single-nucleon

current operator. This is a continuation of our work from

Ref. [11], where other capture reactions, µ− + 2H → νµ +
n + n, µ− + 3He → νµ + 3H, µ− + 3He → νµ + n + d, and

µ− + 3He → νµ + n + n + p, were described in the same

momentum space framework. We use the results of Ref. [11] on

the partial-wave decomposition of the single-nucleon current

operator, the number of partial wave states necessary to reach

convergence of the results, and the simple method to obtain

the averaged capture rates from the calculations of the total

rate. It is quite understandable that also for this reaction the

nonrelativistic kinematics can be safely used.

Using for the first time modern semiphenomenological

2N and 3N forces, we give predictions for the differential

dŴ/dEν capture rates as well as for the corresponding

integrated capture rates Ŵ and the averaged 〈dŴ/dEn〉 capture

rates, taking additionally into account the F = 0 and F = 1

hyperfine states of the muon-tritium atom. Our best numbers

(from the calculations employing the AV18 2N potential and

the Urbana IX 3N force and using the single-nucleon cur-

rent operator containing relativistic corrections) are ŴF=0 =
118.7 s−1, ŴF=1 = 3.92 s−1, and Ŵ = 32.6 s−1.

Our predictions obtained with the 2N force alone are in a

rather good agreement with much older theoretical predictions

from Refs. [15–17,20]. Our results cannot be confronted with

experimental data at the moment. It is clear that a measurement

of the reaction considered in this article would be extremely

difficult. However, due to the presence of three neutrons in

the final state and their two- and three-body interactions,

theoretical and experimental investigations of this reaction are

very interesting and important.

We are well aware that the full understanding of the

muon capture processes requires the inclusion of at least

2N contributions to the nuclear current operators. First steps

in this direction were made in Ref. [11]. We do hope that,

even in the present shape, our predictions will serve as an

important benchmark. In the near future we plan to perform

more complete calculations using the locally regularized

chiral 2N potential [27,28], supplemented by the consistently

regularized chiral 3N forces [29,30] and electroweak-current

operators [31].
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Germany.

[1] D. F. Measday, Phys. Rep. 354, 243 (2001).

[2] T. Gorringe and H. W. Fearing, Rev. Mod. Phys. 76, 31 (2004).

[3] P. Kammel and K. Kubodera, Annu. Rev. Nucl. Part. Sci. 60,

327 (2010).

[4] L. E. Marcucci, M. Piarulli, M. Viviani, L. Girlanda, A. Kievsky,

S. Rosati, and R. Schiavilla, Phys. Rev. C 83, 014002 (2011).

[5] L. E. Marcucci, Int. J. Mod. Phys. A 27, 1230006 (2012).

[6] L. E. Marcucci and M. Piarulli, Few-Body Syst. 49, 35 (2011).

[7] L. E. Marcucci, R. Schiavilla, S. Rosati, A. Kievsky, and M.

Viviani, Phys. Rev. C 66, 054003 (2002).

[8] L. E. Marcucci, R. Schiavilla, M. Viviani, A. Kievsky, S. Rosati,

and J. F. Beacom, Phys. Rev. C 63, 015801 (2000).

[9] L. E. Marcucci, A. Kievsky, S. Rosati, R. Schiavilla, and M.

Viviani, Phys. Rev. Lett. 108, 052502 (2012).

[10] L. E. Marcucci and R. Machleidt, Phys. Rev. C 90, 054001

(2014).

034002-10



MUON CAPTURE ON 3H PHYSICAL REVIEW C 94, 034002 (2016)
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Eur. Phys. J. A 24, 31 (2005).

[14] G. Shen, L. E. Marcucci, J. Carlson, S. Gandolfi, and R.

Schiavilla, Phys. Rev. C 86, 035503 (2012).

[15] A. C. Phillips, F. Roig, and J. Ros, Nucl. Phys. A 237, 493

(1975).

[16] J. Torre, Cl. Gignoux, and G. Goulard, Phys. Rev. Lett. 40, 511

(1978).

[17] J. Torre and B. Goulard, Phys. Rev. Lett. 43, 1222 (1979).

[18] R. D. Amado, Phys. Rev. 132, 485 (1963).

[19] R. de Tourreil and D. W. L. Sprung, Nucl. Phys. A 201, 193

(1973).

[20] R. I. Dzhibuti and R. Ya. Kezerashvili, Yad. Fiz. 39, 1109 (1984)

[Sov. J. Nucl. Phys. 39, 700 (1984)].

[21] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 (1995).

[22] B. S. Pudliner, V. R. Pandharipande, J. Carlson, Steven C. Pieper,

and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).

[23] J. Golak, H. Witała, H. Kamada, D. Hüber, S. Ishikawa, and W.
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