000826909 001__ 826909
000826909 005__ 20210129225722.0
000826909 0247_ $$2doi$$a10.1111/pbi.12662
000826909 0247_ $$2ISSN$$a1467-7644
000826909 0247_ $$2ISSN$$a1467-7652
000826909 0247_ $$2Handle$$a2128/14261
000826909 0247_ $$2WOS$$aWOS:000401931600009
000826909 0247_ $$2altmetric$$aaltmetric:13810757
000826909 0247_ $$2pmid$$apmid:27862876
000826909 037__ $$aFZJ-2017-01125
000826909 041__ $$aEnglish
000826909 082__ $$a540
000826909 1001_ $$0P:(DE-HGF)0$$aKlap, Chen$$b0
000826909 245__ $$aTomato facultative parthenocarpy results from Sl AGAMOUS-LIKE 6 loss of function
000826909 260__ $$aOxford$$bWiley-Blackwell$$c2016
000826909 3367_ $$2DRIVER$$aarticle
000826909 3367_ $$2DataCite$$aOutput Types/Journal article
000826909 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1493184822_1230
000826909 3367_ $$2BibTeX$$aARTICLE
000826909 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826909 3367_ $$00$$2EndNote$$aJournal Article
000826909 520__ $$aThe extreme sensitivity of the microsporogenesis process to moderately high or low temperatures is a major hindrance for tomato (Solanum lycopersicum) sexual reproduction and hence year-round cropping. Consequently, breeding for parthenocarpy, namely, fertilization-independent fruit set, is considered a valuable goal especially for maintaining sustainable agriculture in the face of global warming. A mutant capable of setting high-quality seedless (parthenocarpic) fruit was found following a screen of EMS-mutagenized tomato population for yielding under heat stress. Next-generation sequencing followed by marker-assisted mapping and CRISPR/Cas9 gene knockout confirmed that a mutation in SlAGAMOUS-LIKE 6 (SlAGL6) was responsible for the parthenocarpic phenotype. The mutant is capable of fruit production under heat stress conditions that severely hamper fertilization-dependent fruit set. Different from other tomato recessive monogenic mutants for parthenocarpy, Slagl6 mutations impose no homeotic changes, the seedless fruits are of normal weight and shape, pollen viability is unaffected, and sexual reproduction capacity is maintained, thus making Slagl6 an attractive gene for facultative parthenocarpy. The characteristics of the analysed mutant combined with the gene's mode of expression imply SlAGL6 as a key regulator of the transition between the state of ‘ovary arrest’ imposed towards anthesis and the fertilization-triggered fruit set.
000826909 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000826909 588__ $$aDataset connected to CrossRef
000826909 7001_ $$0P:(DE-HGF)0$$aYeshayahou, Ester$$b1
000826909 7001_ $$0P:(DE-HGF)0$$aBolger, Anthony M.$$b2
000826909 7001_ $$0P:(DE-HGF)0$$aArazi, Tzahi$$b3
000826909 7001_ $$0P:(DE-HGF)0$$aGupta, Suresh K.$$b4
000826909 7001_ $$0P:(DE-HGF)0$$aShabtai, Sara$$b5
000826909 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b6$$ufzj
000826909 7001_ $$0P:(DE-HGF)0$$aSalts, Yehiam$$b7
000826909 7001_ $$0P:(DE-HGF)0$$aBarg, Rivka$$b8$$eCorresponding author
000826909 773__ $$0PERI:(DE-600)2136367-5$$a10.1111/pbi.12662$$n5$$p634–647$$tPlant biotechnology journal$$v15$$x1467-7644$$y2016
000826909 8564_ $$uhttps://juser.fz-juelich.de/record/826909/files/Klap_et_al-2017-Plant_Biotechnology_Journal.pdf$$yOpenAccess
000826909 8564_ $$uhttps://juser.fz-juelich.de/record/826909/files/Klap_et_al-2017-Plant_Biotechnology_Journal.gif?subformat=icon$$xicon$$yOpenAccess
000826909 8564_ $$uhttps://juser.fz-juelich.de/record/826909/files/Klap_et_al-2017-Plant_Biotechnology_Journal.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000826909 8564_ $$uhttps://juser.fz-juelich.de/record/826909/files/Klap_et_al-2017-Plant_Biotechnology_Journal.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826909 8564_ $$uhttps://juser.fz-juelich.de/record/826909/files/Klap_et_al-2017-Plant_Biotechnology_Journal.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000826909 8564_ $$uhttps://juser.fz-juelich.de/record/826909/files/Klap_et_al-2017-Plant_Biotechnology_Journal.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826909 909CO $$ooai:juser.fz-juelich.de:826909$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000826909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich$$b6$$kFZJ
000826909 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000826909 9141_ $$y2017
000826909 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826909 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000826909 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826909 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT BIOTECHNOL J : 2015
000826909 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT BIOTECHNOL J : 2015
000826909 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826909 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826909 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826909 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826909 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000826909 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826909 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826909 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826909 920__ $$lyes
000826909 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000826909 980__ $$ajournal
000826909 980__ $$aVDB
000826909 980__ $$aUNRESTRICTED
000826909 980__ $$aI:(DE-Juel1)IBG-2-20101118
000826909 9801_ $$aFullTexts