001     826909
005     20210129225722.0
024 7 _ |a 10.1111/pbi.12662
|2 doi
024 7 _ |a 1467-7644
|2 ISSN
024 7 _ |a 1467-7652
|2 ISSN
024 7 _ |a 2128/14261
|2 Handle
024 7 _ |a WOS:000401931600009
|2 WOS
024 7 _ |a altmetric:13810757
|2 altmetric
024 7 _ |a pmid:27862876
|2 pmid
037 _ _ |a FZJ-2017-01125
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Klap, Chen
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Tomato facultative parthenocarpy results from Sl AGAMOUS-LIKE 6 loss of function
260 _ _ |a Oxford
|c 2016
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1493184822_1230
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The extreme sensitivity of the microsporogenesis process to moderately high or low temperatures is a major hindrance for tomato (Solanum lycopersicum) sexual reproduction and hence year-round cropping. Consequently, breeding for parthenocarpy, namely, fertilization-independent fruit set, is considered a valuable goal especially for maintaining sustainable agriculture in the face of global warming. A mutant capable of setting high-quality seedless (parthenocarpic) fruit was found following a screen of EMS-mutagenized tomato population for yielding under heat stress. Next-generation sequencing followed by marker-assisted mapping and CRISPR/Cas9 gene knockout confirmed that a mutation in SlAGAMOUS-LIKE 6 (SlAGL6) was responsible for the parthenocarpic phenotype. The mutant is capable of fruit production under heat stress conditions that severely hamper fertilization-dependent fruit set. Different from other tomato recessive monogenic mutants for parthenocarpy, Slagl6 mutations impose no homeotic changes, the seedless fruits are of normal weight and shape, pollen viability is unaffected, and sexual reproduction capacity is maintained, thus making Slagl6 an attractive gene for facultative parthenocarpy. The characteristics of the analysed mutant combined with the gene's mode of expression imply SlAGL6 as a key regulator of the transition between the state of ‘ovary arrest’ imposed towards anthesis and the fertilization-triggered fruit set.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yeshayahou, Ester
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bolger, Anthony M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Arazi, Tzahi
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gupta, Suresh K.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Shabtai, Sara
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Usadel, Björn
|0 P:(DE-Juel1)145719
|b 6
|u fzj
700 1 _ |a Salts, Yehiam
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Barg, Rivka
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1111/pbi.12662
|0 PERI:(DE-600)2136367-5
|n 5
|p 634–647
|t Plant biotechnology journal
|v 15
|y 2016
|x 1467-7644
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/826909/files/Klap_et_al-2017-Plant_Biotechnology_Journal.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/826909/files/Klap_et_al-2017-Plant_Biotechnology_Journal.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/826909/files/Klap_et_al-2017-Plant_Biotechnology_Journal.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/826909/files/Klap_et_al-2017-Plant_Biotechnology_Journal.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/826909/files/Klap_et_al-2017-Plant_Biotechnology_Journal.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/826909/files/Klap_et_al-2017-Plant_Biotechnology_Journal.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:826909
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145719
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT BIOTECHNOL J : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT BIOTECHNOL J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21