001     826910
005     20210129225723.0
024 7 _ |a 10.1111/nph.14220
|2 doi
024 7 _ |a 0028-646X
|2 ISSN
024 7 _ |a 1469-8137
|2 ISSN
024 7 _ |a 2128/13664
|2 Handle
024 7 _ |a WOS:000393875400033
|2 WOS
024 7 _ |a altmetric:12441349
|2 altmetric
024 7 _ |a pmid:27699793
|2 pmid
037 _ _ |a FZJ-2017-01126
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Thoen, Manus P. M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping
260 _ _ |a Oxford [u.a.]
|c 2017
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1485946018_20945
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Plants are exposed to combinations of various biotic and abiotic stresses, but stress responses are usually investigated for single stresses only. Here, we investigated the genetic architecture underlying plant responses to 11 single stresses and several of their combinations by phenotyping 350 Arabidopsis thaliana accessions. A set of 214 000 single nucleotide polymorphisms (SNPs) was screened for marker-trait associations in genome-wide association (GWA) analyses using tailored multi-trait mixed models. Stress responses that share phytohormonal signaling pathways also share genetic architecture underlying these responses. After removing the effects of general robustness, for the 30 most significant SNPs, average quantitative trait locus (QTL) effect sizes were larger for dual stresses than for single stresses. Plants appear to deploy broad-spectrum defensive mechanisms influencing multiple traits in response to combined stresses. Association analyses identified QTLs with contrasting and with similar responses to biotic vs abiotic stresses, and below-ground vs above-ground stresses. Our approach allowed for an unprecedented comprehensive genetic analysis of how plants deal with a wide spectrum of stress conditions.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a 583 - Innovative Synergisms (POF3-583)
|0 G:(DE-HGF)POF3-583
|c POF3-583
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Davila Olivas, Nelson H.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kloth, Karen J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Coolen, Silvia
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Huang, Ping-Ping
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Aarts, Mark G. M.
|0 0000-0001-5257-0740
|b 5
700 1 _ |a Bac-Molenaar, Johanna A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bakker, Jaap
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bouwmeester, Harro J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Broekgaarden, Colette
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Bucher, Johan
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Busscher-Lange, Jacqueline
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Cheng, Xi
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Fradin, Emilie F.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Jongsma, Maarten A.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Julkowska, Magdalena M.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Keurentjes, Joost J. B.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Ligterink, Wilco
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Pieterse, Corné M. J.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Ruyter-Spira, Carolien
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Smant, Geert
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Testerink, Christa
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Usadel, Björn
|0 P:(DE-Juel1)145719
|b 22
|u fzj
700 1 _ |a van Loon, Joop J. A.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a van Pelt, Johan A.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a van Schaik, Casper C.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a van Wees, Saskia C. M.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Visser, Richard G. F.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Voorrips, Roeland
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Vosman, Ben
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Vreugdenhil, Dick
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Warmerdam, Sonja
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Wiegers, Gerrie L.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a van Heerwaarden, Joost
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Kruijer, Willem
|0 P:(DE-HGF)0
|b 34
700 1 _ |a van Eeuwijk, Fred A.
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Dicke, Marcel
|0 P:(DE-HGF)0
|b 36
|e Corresponding author
773 _ _ |a 10.1111/nph.14220
|g Vol. 213, no. 3, p. 1346 - 1362
|0 PERI:(DE-600)1472194-6
|n 3
|p 1346 - 1362
|t The new phytologist
|v 213
|y 2017
|x 0028-646X
856 4 _ |u https://juser.fz-juelich.de/record/826910/files/Thoen_et_al-2017-New_Phytologist.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826910/files/Thoen_et_al-2017-New_Phytologist.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826910/files/Thoen_et_al-2017-New_Phytologist.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826910/files/Thoen_et_al-2017-New_Phytologist.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826910/files/Thoen_et_al-2017-New_Phytologist.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/826910/files/Thoen_et_al-2017-New_Phytologist.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:826910
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)145719
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-583
|2 G:(DE-HGF)POF3-500
|v Innovative Synergisms
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW PHYTOL : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEW PHYTOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21