000826912 001__ 826912
000826912 005__ 20210129225723.0
000826912 0247_ $$2doi$$a10.1104/pp.16.00621
000826912 0247_ $$2ISSN$$a0032-0889
000826912 0247_ $$2ISSN$$a1532-2548
000826912 0247_ $$2WOS$$aWOS:000391147700011
000826912 0247_ $$2altmetric$$aaltmetric:9876841
000826912 0247_ $$2pmid$$apmid:27436830
000826912 037__ $$aFZJ-2017-01128
000826912 041__ $$aEnglish
000826912 082__ $$a580
000826912 1001_ $$0P:(DE-HGF)0$$aMillet, Emilie$$b0
000826912 245__ $$aGenome-wide analysis of yield in Europe: allelic effects as functions of drought and heat scenarios
000826912 260__ $$aRockville, Md.$$bSoc.$$c2016
000826912 3367_ $$2DRIVER$$aarticle
000826912 3367_ $$2DataCite$$aOutput Types/Journal article
000826912 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485514514_4636
000826912 3367_ $$2BibTeX$$aARTICLE
000826912 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826912 3367_ $$00$$2EndNote$$aJournal Article
000826912 520__ $$aAssessing the genetic variability of plant performance under heat and drought scenarios can contribute to reduce the negative effects of climate change. We propose here an approach that consisted of (1) clustering time courses of environmental variables simulated by a crop model in current (35 years × 55 sites) and future conditions into six scenarios of temperature and water deficit as experienced by maize (Zea mays L.) plants; (2) performing 29 field experiments in contrasting conditions across Europe with 244 maize hybrids; (3) assigning individual experiments to scenarios based on environmental conditions as measured in each field experiment; frequencies of temperature scenarios in our experiments corresponded to future heat scenarios (+5°C); (4) analyzing the genetic variation of plant performance for each environmental scenario. Forty-eight quantitative trait loci (QTLs) of yield were identified by association genetics using a multi-environment multi-locus model. Eight and twelve QTLs were associated to tolerances to heat and drought stresses because they were specific to hot and dry scenarios, respectively, with low or even negative allelic effects in favorable scenarios. Twenty-four QTLs improved yield in favorable conditions but showed nonsignificant effects under stress; they were therefore associated with higher sensitivity. Our approach showed a pattern of QTL effects expressed as functions of environmental variables and scenarios, allowing us to suggest hypotheses for mechanisms and candidate genes underlying each QTL. It can be used for assessing the performance of genotypes and the contribution of genomic regions under current and future stress situations and to accelerate breeding for drought-prone environments.
000826912 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000826912 588__ $$aDataset connected to CrossRef
000826912 7001_ $$0P:(DE-HGF)0$$aWelcker, Claude$$b1
000826912 7001_ $$0P:(DE-HGF)0$$aKruijer, Willem$$b2
000826912 7001_ $$0P:(DE-HGF)0$$aNegro, Sandra$$b3
000826912 7001_ $$0P:(DE-HGF)0$$aNicolas, Stephane$$b4
000826912 7001_ $$0P:(DE-HGF)0$$aPraud, Sebastien$$b5
000826912 7001_ $$0P:(DE-HGF)0$$aRanc, Nicolas$$b6
000826912 7001_ $$0P:(DE-HGF)0$$aPresterl, Thomas$$b7
000826912 7001_ $$0P:(DE-HGF)0$$aTuberosa, Roberto$$b8
000826912 7001_ $$0P:(DE-HGF)0$$aBedo, Zoltan$$b9
000826912 7001_ $$0P:(DE-HGF)0$$aDraye, Xavier$$b10
000826912 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b11
000826912 7001_ $$0P:(DE-HGF)0$$aCharcosset, Alain$$b12
000826912 7001_ $$0P:(DE-HGF)0$$avan Eeuwijk, Fred$$b13
000826912 7001_ $$0P:(DE-HGF)0$$aTardieu, Francois$$b14$$eCorresponding author
000826912 7001_ $$0P:(DE-HGF)0$$aCoupel-Ledru, Aude$$b15
000826912 7001_ $$0P:(DE-HGF)0$$aBauland, Cyril$$b16
000826912 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.16.00621$$gp. pp.00621.2016 -$$n2$$p749-764$$tPlant physiology$$v172$$x1532-2548$$y2016
000826912 8564_ $$uhttps://juser.fz-juelich.de/record/826912/files/Plant%20Physiol.-2016-Millet-749-64.pdf$$yRestricted
000826912 8564_ $$uhttps://juser.fz-juelich.de/record/826912/files/Plant%20Physiol.-2016-Millet-749-64.gif?subformat=icon$$xicon$$yRestricted
000826912 8564_ $$uhttps://juser.fz-juelich.de/record/826912/files/Plant%20Physiol.-2016-Millet-749-64.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826912 8564_ $$uhttps://juser.fz-juelich.de/record/826912/files/Plant%20Physiol.-2016-Millet-749-64.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826912 8564_ $$uhttps://juser.fz-juelich.de/record/826912/files/Plant%20Physiol.-2016-Millet-749-64.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826912 8564_ $$uhttps://juser.fz-juelich.de/record/826912/files/Plant%20Physiol.-2016-Millet-749-64.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826912 909CO $$ooai:juser.fz-juelich.de:826912$$pVDB
000826912 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000826912 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826912 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826912 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826912 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT PHYSIOL : 2015
000826912 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826912 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826912 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826912 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826912 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826912 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826912 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000826912 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000826912 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000826912 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT PHYSIOL : 2015
000826912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich$$b11$$kFZJ
000826912 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000826912 9141_ $$y2016
000826912 920__ $$lyes
000826912 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000826912 980__ $$ajournal
000826912 980__ $$aVDB
000826912 980__ $$aI:(DE-Juel1)IBG-2-20101118
000826912 980__ $$aUNRESTRICTED