000826913 001__ 826913
000826913 005__ 20210129225723.0
000826913 0247_ $$2doi$$a10.1093/pcp/pcw117
000826913 0247_ $$2ISSN$$a0032-0781
000826913 0247_ $$2ISSN$$a1471-9053
000826913 0247_ $$2Handle$$a2128/13663
000826913 0247_ $$2WOS$$aWOS:000384717400013
000826913 0247_ $$2altmetric$$aaltmetric:9536150
000826913 0247_ $$2pmid$$apmid:27388338
000826913 037__ $$aFZJ-2017-01129
000826913 041__ $$aEnglish
000826913 082__ $$a570
000826913 1001_ $$0P:(DE-HGF)0$$aGhaffari, Mohammad R.$$b0
000826913 245__ $$aThe Metabolic Signature of Biomass Formation in Barley
000826913 260__ $$aOxford$$bOxford University Press$$c2016
000826913 3367_ $$2DRIVER$$aarticle
000826913 3367_ $$2DataCite$$aOutput Types/Journal article
000826913 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485514937_4642
000826913 3367_ $$2BibTeX$$aARTICLE
000826913 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826913 3367_ $$00$$2EndNote$$aJournal Article
000826913 520__ $$aThe network analysis of genome-wide transcriptome responses, metabolic signatures and enzymes’ relationship to biomass formation has been studied in a diverse panel of 12 barley accessions during vegetative and reproductive stages. The primary metabolites and enzymes involved in central metabolism that determine the accumulation of shoot biomass at the vegetative stage of barley development are primarily being linked to sucrose accumulation and sucrose synthase activity. Interestingly, the metabolic and enzyme links which are strongly associated with biomass accumulation during reproductive stages are related to starch accumulation and tricarboxylic acid (TCA) cycle intermediates citrate, malate, trans -aconitate and isocitrate. Additional significant associations were also found for UDP glucose, ATP and the amino acids isoleucine, valine, glutamate and histidine during the reproductive stage. A network analysis resulted in a combined identification of metabolite and enzyme signatures indicative for grain weight accumulation that was correlated with the activity of ADP-glucose pyrophosphorylase (AGPase), a rate-limiting enzyme involved in starch biosynthesis, and with that of alanine amino transferase involved in the synthesis of storage proteins. We propose that the mechanism related to vegetative and reproductive biomass formation vs. seed biomass formation is being linked to distinct fluxes regulating sucrose, starch, sugars and amino acids as central resources. These distinct biomarkers can be used to engineer biomass production and grain weight in barley. 
000826913 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000826913 588__ $$aDataset connected to CrossRef
000826913 7001_ $$0P:(DE-HGF)0$$aShahinnia, Fahimeh$$b1
000826913 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b2$$ufzj
000826913 7001_ $$0P:(DE-HGF)0$$aJunker, Björn$$b3
000826913 7001_ $$0P:(DE-HGF)0$$aSchreiber, Falk$$b4
000826913 7001_ $$0P:(DE-HGF)0$$aSreenivasulu, Nese$$b5
000826913 7001_ $$0P:(DE-HGF)0$$aHajirezaei, Mohammad R.$$b6$$eCorresponding author
000826913 773__ $$0PERI:(DE-600)2020758-X$$a10.1093/pcp/pcw117$$gVol. 57, no. 9, p. 1943 - 1960$$n9$$p1943 - 1960$$tPlant & cell physiology$$v57$$x1471-9053$$y2016
000826913 8564_ $$uhttps://juser.fz-juelich.de/record/826913/files/pcw117.pdf$$yOpenAccess
000826913 8564_ $$uhttps://juser.fz-juelich.de/record/826913/files/pcw117.gif?subformat=icon$$xicon$$yOpenAccess
000826913 8564_ $$uhttps://juser.fz-juelich.de/record/826913/files/pcw117.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000826913 8564_ $$uhttps://juser.fz-juelich.de/record/826913/files/pcw117.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000826913 8564_ $$uhttps://juser.fz-juelich.de/record/826913/files/pcw117.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000826913 8564_ $$uhttps://juser.fz-juelich.de/record/826913/files/pcw117.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000826913 909CO $$ooai:juser.fz-juelich.de:826913$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000826913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich$$b2$$kFZJ
000826913 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000826913 9141_ $$y2016
000826913 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826913 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000826913 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826913 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000826913 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL PHYSIOL : 2015
000826913 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826913 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826913 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826913 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826913 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000826913 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826913 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000826913 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826913 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000826913 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826913 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000826913 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826913 920__ $$lyes
000826913 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000826913 980__ $$ajournal
000826913 980__ $$aVDB
000826913 980__ $$aUNRESTRICTED
000826913 980__ $$aI:(DE-Juel1)IBG-2-20101118
000826913 9801_ $$aFullTexts