001     826950
005     20210129225727.0
024 7 _ |a 10.1021/acsnano.6b02627
|2 doi
024 7 _ |a WOS:000381959100041
|2 WOS
024 7 _ |a altmetric:9736141
|2 altmetric
024 7 _ |a pmid:27404114
|2 pmid
037 _ _ |a FZJ-2017-01157
082 _ _ |a 540
100 1 _ |a Streich, Carmen
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Characterizing the Effect of Multivalent Conjugates Composed of Aβ-Specific Ligands and Metal Nanoparticles on Neurotoxic Fibrillar Aggregation
260 _ _ |a Washington, DC
|c 2016
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1485515068_4642
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Therapeutically active small molecules represent promising nonimmunogenic alternatives to antibodies for specifically targeting disease-relevant receptors. However, a potential drawback compared to antibody–antigen interactions may be the lower affinity of small molecules toward receptors. Here, we overcome this low-affinity problem by coating the surface of nanoparticles (NPs) with multiple ligands. Specifically, we explored the use of gold and platinum nanoparticles to increase the binding affinity of Aβ-specific small molecules to inhibit Aβ peptide aggregation into fibrils in vitro. The interactions of bare NPs, free ligands, and NP-bound ligands with Aβ are comprehensively studied via physicochemical methods (spectroscopy, microscopy, immunologic tests) and cell assays. Reduction of thioflavin T fluorescence, as an indicator for β-sheet content, and inhibition of cellular Aβ excretion are even more effective with NP-bound ligands than with the free ligands. The results from this study may have implications in the development of therapeutics for treating Alzheimer’s disease.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
700 1 _ |a Akkari, Laura
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Decker, Christina
|0 P:(DE-Juel1)162438
|b 2
700 1 _ |a Bormann, Jenny
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rehbock, Christoph
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Müller-Schiffmann, Andreas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Niemeyer, Felix Carlsson
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Nagel-Steger, Luitgard
|0 P:(DE-Juel1)162443
|b 7
|u fzj
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 8
|u fzj
700 1 _ |a Sacca, Barbara
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Korth, Carsten
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Schrader, Thomas
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
700 1 _ |a Barcikowski, Stephan
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1021/acsnano.6b02627
|0 PERI:(DE-600)2383064-5
|n 8
|p 7582-7597
|t ACS nano
|v 10
|y 2016
|x 1936-0851
856 4 _ |u https://juser.fz-juelich.de/record/826950/files/acsnano.6b02627.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/826950/files/acsnano.6b02627.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/826950/files/acsnano.6b02627.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/826950/files/acsnano.6b02627.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/826950/files/acsnano.6b02627.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/826950/files/acsnano.6b02627.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:826950
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)162443
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2015
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS NANO : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21