000826975 001__ 826975
000826975 005__ 20250129092441.0
000826975 037__ $$aFZJ-2017-01182
000826975 041__ $$aEnglish
000826975 1001_ $$0P:(DE-Juel1)133944$$aStreun, M.$$b0$$eCorresponding author$$ufzj
000826975 1112_ $$aPET/MR and SPECT/MR 2016$$cKöln$$d2016-05-23 - 2016-05-25$$gPSMR 2016$$wGermany
000826975 245__ $$aImaging of Plants with MRI and the dedicated PET scanner phenoPET
000826975 260__ $$c2016
000826975 3367_ $$033$$2EndNote$$aConference Paper
000826975 3367_ $$2BibTeX$$aINPROCEEDINGS
000826975 3367_ $$2DRIVER$$aconferenceObject
000826975 3367_ $$2ORCID$$aCONFERENCE_POSTER
000826975 3367_ $$2DataCite$$aOutput Types/Conference Poster
000826975 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1485958581_20946$$xAfter Call
000826975 520__ $$aABSTRACTWithin the German Plant Phenotyping Network (DPPN), we develop Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) as two modalities enabling a noninvasive observation of the three-dimensional structural and functional properties of roots grown in soil. The MRI System is a 4.7T modified small animal scanner (Varian) and produces 3D images with a high root to soil contrast [1]. A user-friendly data processing pipeline has been established to extract quantitative information out of these 3D MRI images [2]. Functional information on carbon transport within intact root systems can be obtained by positron emission tomography. Radioactively labelled [11C]-CO2 is taken up by photosynthesis and labelled carbon is transported into the root system. In order to characterize these transport mechanisms the new PET system phenoPET has been developed in cooperation with Philips Digital Photon Counting (PDPC). The scanner employs LYSO scintillators of 1.85×1.85×10 mm3 and digital SiPM arrays as photo detectors (DPC3200-22-44, PDPC) [3] which are arranged in three stacked rings  [4]. The field of view measures 18 cm in diameter and 20 cm of axial height. The phenoPET system has been assembled and very first plant images have been obtained using the PET image reconstruction software PRESTO [5]. For a quantitative reconstruction of an arbitrary 3D tracer distribution several correction steps still need to be implemented. Thus, the phenoPET is expected to be available for plant measurements by mid 2016.Combining both modalities for a non-invasive structural (MRI) and functional (PET) observation of roots grown in soil may accelerate trait identification of resource efficient roots. REFERENCES[1]	Jahnke et al., “Combined MRI–PET dissects dynamic changes in plant structures and functions”, The Plant Journal  59, 634–644 (2009)[2]	D. van Dusschoten et al. „Quantitative 3D Analysis of Plant Roots growing in Soil using Magnetic Resonance Imaging”, Plant Physiology DOI:10.1104/pp.15.01388 (2016)[3]	Y. Haemisch, T. Frach, C. Degenhardt, and A. Thon, "Fully Digital Arrays of Silicon Photomultipliers (dSiPM) – a Scalable Alternative to Vacuum Photomultiplier Tubes (PMT)." Physics Procedia 37, 1546 (2012)[4]	M. Streun et al.,  “phenoPET: A dedicated PET Scanner for Plant Research based on digital SiPMs (DPCs)”, NSS/MIC 2014, Seattle, Conf. Rec. M11-18 (2014)[5]	Scheins, J., et al., Fully-3D PET Image Reconstruction Using Scanner-Independent, Adaptive Projection Dara and Highly Rotation-Symmetric Voxel Assemblies, IEEE Transaction on Medical Imaging, Vol. 30, No. 3, Mar 2011, pp. 879-892
000826975 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000826975 536__ $$0G:(DE-Juel1)BMBF-031A053A$$aDPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)$$cBMBF-031A053A$$fDeutsches Pflanzen Phänotypisierungsnetzwerk$$x1
000826975 7001_ $$0P:(DE-Juel1)131784$$aPflugfelder, D.$$b1$$ufzj
000826975 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, D.$$b2$$ufzj
000826975 7001_ $$0P:(DE-Juel1)130632$$aErven, A.$$b3$$ufzj
000826975 7001_ $$0P:(DE-Juel1)156472$$aJokhovets, L.$$b4$$ufzj
000826975 7001_ $$0P:(DE-Juel1)129346$$aKochs, J.$$b5$$ufzj
000826975 7001_ $$0P:(DE-Juel1)129360$$aMetzner, R.$$b6$$ufzj
000826975 7001_ $$0P:(DE-Juel1)133922$$aNöldgen, H.$$b7$$ufzj
000826975 7001_ $$0P:(DE-Juel1)165733$$aKoller, R.$$b8$$ufzj
000826975 7001_ $$0P:(DE-Juel1)131791$$aScheins, J.$$b9$$ufzj
000826975 7001_ $$0P:(DE-Juel1)144879$$aPostma, Johannes Auke$$b10$$ufzj
000826975 7001_ $$0P:(DE-Juel1)5963$$aBühler, J.$$b11$$ufzj
000826975 7001_ $$0P:(DE-Juel1)129303$$aChlubek, A.$$b12$$ufzj
000826975 7001_ $$0P:(DE-Juel1)129336$$aJahnke, S.$$b13$$ufzj
000826975 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b14$$ufzj
000826975 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b15$$ufzj
000826975 909CO $$ooai:juser.fz-juelich.de:826975$$pVDB
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133944$$aForschungszentrum Jülich$$b0$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131784$$aForschungszentrum Jülich$$b1$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129425$$aForschungszentrum Jülich$$b2$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130632$$aForschungszentrum Jülich$$b3$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156472$$aForschungszentrum Jülich$$b4$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129346$$aForschungszentrum Jülich$$b5$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129360$$aForschungszentrum Jülich$$b6$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133922$$aForschungszentrum Jülich$$b7$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165733$$aForschungszentrum Jülich$$b8$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131791$$aForschungszentrum Jülich$$b9$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144879$$aForschungszentrum Jülich$$b10$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5963$$aForschungszentrum Jülich$$b11$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129303$$aForschungszentrum Jülich$$b12$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129336$$aForschungszentrum Jülich$$b13$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b14$$kFZJ
000826975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129402$$aForschungszentrum Jülich$$b15$$kFZJ
000826975 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000826975 9141_ $$y2016
000826975 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000826975 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000826975 9201_ $$0I:(DE-Juel1)IBG-2-3-TA-20110204$$kIBG-2-3-TA$$lBiotechnologie Technische und administrative Infrastruktur IBG-2 und 3$$x1
000826975 980__ $$aposter
000826975 980__ $$aVDB
000826975 980__ $$aUNRESTRICTED
000826975 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000826975 980__ $$aI:(DE-Juel1)IBG-2-3-TA-20110204
000826975 981__ $$aI:(DE-Juel1)PGI-4-20110106