001     826975
005     20250129092441.0
037 _ _ |a FZJ-2017-01182
041 _ _ |a English
100 1 _ |a Streun, M.
|0 P:(DE-Juel1)133944
|b 0
|e Corresponding author
|u fzj
111 2 _ |a PET/MR and SPECT/MR 2016
|g PSMR 2016
|c Köln
|d 2016-05-23 - 2016-05-25
|w Germany
245 _ _ |a Imaging of Plants with MRI and the dedicated PET scanner phenoPET
260 _ _ |c 2016
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1485958581_20946
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a ABSTRACTWithin the German Plant Phenotyping Network (DPPN), we develop Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) as two modalities enabling a noninvasive observation of the three-dimensional structural and functional properties of roots grown in soil. The MRI System is a 4.7T modified small animal scanner (Varian) and produces 3D images with a high root to soil contrast [1]. A user-friendly data processing pipeline has been established to extract quantitative information out of these 3D MRI images [2]. Functional information on carbon transport within intact root systems can be obtained by positron emission tomography. Radioactively labelled [11C]-CO2 is taken up by photosynthesis and labelled carbon is transported into the root system. In order to characterize these transport mechanisms the new PET system phenoPET has been developed in cooperation with Philips Digital Photon Counting (PDPC). The scanner employs LYSO scintillators of 1.85×1.85×10 mm3 and digital SiPM arrays as photo detectors (DPC3200-22-44, PDPC) [3] which are arranged in three stacked rings [4]. The field of view measures 18 cm in diameter and 20 cm of axial height. The phenoPET system has been assembled and very first plant images have been obtained using the PET image reconstruction software PRESTO [5]. For a quantitative reconstruction of an arbitrary 3D tracer distribution several correction steps still need to be implemented. Thus, the phenoPET is expected to be available for plant measurements by mid 2016.Combining both modalities for a non-invasive structural (MRI) and functional (PET) observation of roots grown in soil may accelerate trait identification of resource efficient roots. REFERENCES[1] Jahnke et al., “Combined MRI–PET dissects dynamic changes in plant structures and functions”, The Plant Journal 59, 634–644 (2009)[2] D. van Dusschoten et al. „Quantitative 3D Analysis of Plant Roots growing in Soil using Magnetic Resonance Imaging”, Plant Physiology DOI:10.1104/pp.15.01388 (2016)[3] Y. Haemisch, T. Frach, C. Degenhardt, and A. Thon, "Fully Digital Arrays of Silicon Photomultipliers (dSiPM) – a Scalable Alternative to Vacuum Photomultiplier Tubes (PMT)." Physics Procedia 37, 1546 (2012)[4] M. Streun et al., “phenoPET: A dedicated PET Scanner for Plant Research based on digital SiPMs (DPCs)”, NSS/MIC 2014, Seattle, Conf. Rec. M11-18 (2014)[5] Scheins, J., et al., Fully-3D PET Image Reconstruction Using Scanner-Independent, Adaptive Projection Dara and Highly Rotation-Symmetric Voxel Assemblies, IEEE Transaction on Medical Imaging, Vol. 30, No. 3, Mar 2011, pp. 879-892
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a DPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)
|0 G:(DE-Juel1)BMBF-031A053A
|c BMBF-031A053A
|f Deutsches Pflanzen Phänotypisierungsnetzwerk
|x 1
700 1 _ |a Pflugfelder, D.
|0 P:(DE-Juel1)131784
|b 1
|u fzj
700 1 _ |a van Dusschoten, D.
|0 P:(DE-Juel1)129425
|b 2
|u fzj
700 1 _ |a Erven, A.
|0 P:(DE-Juel1)130632
|b 3
|u fzj
700 1 _ |a Jokhovets, L.
|0 P:(DE-Juel1)156472
|b 4
|u fzj
700 1 _ |a Kochs, J.
|0 P:(DE-Juel1)129346
|b 5
|u fzj
700 1 _ |a Metzner, R.
|0 P:(DE-Juel1)129360
|b 6
|u fzj
700 1 _ |a Nöldgen, H.
|0 P:(DE-Juel1)133922
|b 7
|u fzj
700 1 _ |a Koller, R.
|0 P:(DE-Juel1)165733
|b 8
|u fzj
700 1 _ |a Scheins, J.
|0 P:(DE-Juel1)131791
|b 9
|u fzj
700 1 _ |a Postma, Johannes Auke
|0 P:(DE-Juel1)144879
|b 10
|u fzj
700 1 _ |a Bühler, J.
|0 P:(DE-Juel1)5963
|b 11
|u fzj
700 1 _ |a Chlubek, A.
|0 P:(DE-Juel1)129303
|b 12
|u fzj
700 1 _ |a Jahnke, S.
|0 P:(DE-Juel1)129336
|b 13
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 14
|u fzj
700 1 _ |a Schurr, U.
|0 P:(DE-Juel1)129402
|b 15
|u fzj
909 C O |o oai:juser.fz-juelich.de:826975
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)133944
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129425
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130632
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156472
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129346
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129360
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)133922
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)165733
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)144879
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)5963
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)129303
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)129336
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)142562
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)129402
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-3-TA-20110204
|k IBG-2-3-TA
|l Biotechnologie Technische und administrative Infrastruktur IBG-2 und 3
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)IBG-2-3-TA-20110204
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21