000827046 001__ 827046
000827046 005__ 20210129225739.0
000827046 0247_ $$2doi$$a10.1021/acs.jctc.5b01106
000827046 0247_ $$2WOS$$aWOS:000371852300012
000827046 0247_ $$2altmetric$$aaltmetric:5092982
000827046 0247_ $$2pmid$$apmid:26765212
000827046 037__ $$aFZJ-2017-01252
000827046 082__ $$a540
000827046 1001_ $$0P:(DE-HGF)0$$aBuslaev, Pavel$$b0
000827046 245__ $$aPrincipal Component Analysis of Lipid Molecule Conformational Changes in Molecular Dynamics Simulations
000827046 260__ $$aWashington, DC$$c2016
000827046 3367_ $$2DRIVER$$aarticle
000827046 3367_ $$2DataCite$$aOutput Types/Journal article
000827046 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485849100_18208
000827046 3367_ $$2BibTeX$$aARTICLE
000827046 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827046 3367_ $$00$$2EndNote$$aJournal Article
000827046 520__ $$aMolecular dynamics simulations of lipid bilayers are ubiquitous nowadays. Usually, either global properties of the bilayer or some particular characteristics of each lipid molecule are evaluated in such simulations, but the structural properties of the molecules as a whole are rarely studied. Here, we show how a comprehensive quantitative description of conformational space and dynamics of a single lipid molecule can be achieved via the principal component analysis (PCA). We illustrate the approach by analyzing and comparing simulations of DOPC bilayers obtained using eight different force fields: all-atom generalized AMBER, CHARMM27, CHARMM36, Lipid14, and Slipids and united-atom Berger, GROMOS43A1-S3, and GROMOS54A7. Similarly to proteins, most of the structural variance of a lipid molecule can be described by only a few principal components. These major components are similar in different simulations, although there are notable distinctions between the older and newer force fields and between the all-atom and united-atom force fields. The DOPC molecules in the simulations generally equilibrate on the time scales of tens to hundreds of nanoseconds. The equilibration is the slowest in the GAFF simulation and the fastest in the Slipids simulation. Somewhat unexpectedly, the equilibration in the united-atom force fields is generally slower than in the all-atom force fields. Overall, there is a clear separation between the more variable previous generation force fields and significantly more similar new generation force fields (CHARMM36, Lipid14, Slipids). We expect that the presented approaches will be useful for quantitative analysis of conformations and dynamics of individual lipid molecules in other simulations of lipid bilayers.
000827046 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000827046 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b1$$ufzj
000827046 7001_ $$0P:(DE-HGF)0$$aGrudinin, Sergei$$b2$$eCorresponding author
000827046 7001_ $$0P:(DE-Juel1)165798$$aGushchin, Ivan$$b3$$eCorresponding author
000827046 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.5b01106$$n3$$p1019-1028$$tJournal of chemical theory and computation$$v12$$x1549-9618$$y2016
000827046 8564_ $$uhttps://juser.fz-juelich.de/record/827046/files/acs.jctc.5b01106.pdf$$yRestricted
000827046 8564_ $$uhttps://juser.fz-juelich.de/record/827046/files/acs.jctc.5b01106.gif?subformat=icon$$xicon$$yRestricted
000827046 8564_ $$uhttps://juser.fz-juelich.de/record/827046/files/acs.jctc.5b01106.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000827046 8564_ $$uhttps://juser.fz-juelich.de/record/827046/files/acs.jctc.5b01106.jpg?subformat=icon-180$$xicon-180$$yRestricted
000827046 8564_ $$uhttps://juser.fz-juelich.de/record/827046/files/acs.jctc.5b01106.jpg?subformat=icon-640$$xicon-640$$yRestricted
000827046 8564_ $$uhttps://juser.fz-juelich.de/record/827046/files/acs.jctc.5b01106.pdf?subformat=pdfa$$xpdfa$$yRestricted
000827046 909CO $$ooai:juser.fz-juelich.de:827046$$pVDB
000827046 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich$$b1$$kFZJ
000827046 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000827046 9141_ $$y2016
000827046 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827046 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2015
000827046 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2015
000827046 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827046 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000827046 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827046 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000827046 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827046 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000827046 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827046 920__ $$lyes
000827046 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000827046 980__ $$ajournal
000827046 980__ $$aVDB
000827046 980__ $$aUNRESTRICTED
000827046 980__ $$aI:(DE-Juel1)ICS-6-20110106
000827046 981__ $$aI:(DE-Juel1)IBI-7-20200312