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Free electrons with a helical phase front, referred to as “twisted” electrons, possess an orbital angular

momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction.

This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have

numerous potential applications in materials science. Measuring this quantity often relies on a series of

projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we

propose a nondestructive way of measuring an electron beam’s OAM through the interaction of this

associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced

currents within the loop, which are found to be directly proportional to the electron’s OAM value.

Moreover, the electron experiences no OAM variations and only minimal energy losses upon the

measurement, and, hence, the nondestructive nature of the proposed technique.

DOI: 10.1103/PhysRevLett.117.154801

Introduction.—Electrons can possess net quantized

orbital angular momentum (OAM) while undergoing

free-space propagation [1]. The wave function ψ associated

with such an electron includes an exp ðilφÞ term arising

from its helical phase fronts, where l and φ are an integer

and the azimuthal coordinate, respectively. Beams consist-

ing of these “twisted” electrons are referred to as electron

vortex beams. Different techniques, such as direct imprint-

ing of a phase variation [2], amplitude [3] and phase [4]

holograms, and magnetic needles [5] have experimentally

been shown to generate such electron beams. In turn, these

electron beams possess quantized OAM and circulating

current densities Jφ in a plane orthogonal to their propa-

gation direction. It thus follows that these current densities

cause twisted electron beams to carry a magnetic dipole

moment lμB in addition to their intrinsic spin magnetic

dipole moment �μB, where μB is the Bohr magneton [6].

Hence, unlike its intrinsic spin, the magnetic moment

associated with its twisted wave front is in principle

unbounded, allowing values as high as 200μB to be

achieved experimentally [7,8]. Such a large unbounded

magnetic moment may find applications in materials

science [9], overcoming the fact that the generation of

spin-polarized electron beams has historically been affected

by empirical and fundamental difficulties [10]. Among

future potential applications are investigations related to

magnetic dichroism in materials [11], the fundamental

nature of radiation [12], exotic physics such as virtual

forces [13], and the interaction of twisted electrons with

light beams [14]. Many of these examples require the

analysis of the electron beam’s OAM content, a process

adopted from its optical counterparts and that is usually

carried out by making the beam go through phase-

flattening projective measurements by means of phase

holograms [15–17]. However, the analysis of each OAM

component requires the use of a distinct hologram, which

can make the investigation of a beam’s OAM components

long, tedious, and inefficient. Moreover, the beam’s OAM

content, after passing through a phase mask, will have a

value different from that of the initial state [16].

In this Letter, we propose an alternative way of meas-

uring an electron beam’s OAM relying on electric fields

induced by time-varying magnetic fields. The principle of

our technique is related to one where a magnet is dropped

through a conductive tube (or ring). The falling motion

of the magnet generates currents within the tube, that in

turn produce a magnetic force countering the magnet’s

descent [18–20]. By using a similar reasoning, in the

nonrelativistic regime, one can calculate the induced

current inside a microscale conductive ring due to the

motion of an OAM-carrying electron traveling through it.

Because the electron’s OAM and magnetic moment are

quantized, the magnetic field emanating from the electron

will also be quantized and will produce discrete induced

currents inside the ring that can be related directly to the

OAM carried by the electron.
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Theory.—We use a semiclassical approach to describe

the interaction between a propagating electron vortex beam

and a conductive material. Let us consider an electron with

a rest mass me propagating along a specific axis, e.g., the z
axis, and possessing a well-defined central kinetic energy E

and momentum p0, where c is the velocity of light in

vacuum. Under the slowly varying amplitude approxima-

tion, the wave packet associated with this electron must

satisfy the paraxial Schrödinger equation. The correspond-

ing wave function is quantized, and holds a specific shape

based on its initial probability and phase distribution

conditions. For instance, it may be quantized in the trans-

verse plane as well as in the longitudinal direction [1],

which yields the following wave packet in cylindrical

coordinates r;φ; z,

ψp;l;nðr;φ; z; tÞ ¼ uLGp;lðr;φ; tÞuHGn ðζÞeiðp0z−EtÞ=ℏ; ð1Þ

where uLG and uHG are Laguerre-Gauss and Hermite-Gauss

modes [21], respectively, in which p and n are positive

integers defining the electron’s distribution in the transverse

plane and the longitudinal direction. l is an integer number

that is associated with the OAM carried by the beam and

also defines its transverse distribution. The electron wave

packet’s center of mass is denoted by ζ ¼ z − p0t=me,

while ℏ is the reduced Planck constant. On account of the

electron’s OAM, its rest frame four-current density consists

only of a scalar and an azimuthal component, according to

the expression

jαrest ¼ ðcρ; Jr; Jφ; JzÞ ¼
�

−ceP; 0;
ℏl

mer
P; 0

�

; ð2Þ

where ρ, Jr, Jφ, and Jz correspond to charge density and

radial, azimuthal, and longitudinal current densities,

respectively, while P ¼ Pðr0;φ0; z0Þ ¼ jψp;l;nðr;φ; z; tÞj2
is the probability density function of the electron’s position

in its rest frame defined by the coordinates r0;φ0; z0, and −e
is the electron charge. The four-current densities in the

laboratory frame that the electron perceives as traveling

along the z direction can then be calculated via an inverse

Lorentz transformation, jαlab ¼ ðΛα
βÞ−1j

β
rest, yielding

jαlab ¼ ½−ceγP; 0; ðℏl=merÞP;−γβceP�, where Λα
β is the

Lorentz transformation matrix, β ¼ p0=ðmecÞ, and γ ¼
ð1 − β2Þ−1=2 [22]. Likewise, a Lorentz boost along the z
axis must also be applied to the electron’s rest-frame

coordinates to express its current densities with respect

to the laboratory frame coordinates, i.e., xα
lab ¼ ðΛα

βÞ−1x
β
rest,

where xα ¼ ðct; rÞ. One may associate the first, third, and

last terms of the four-vector current density with an

electrostatic potential V and the azimuthal and longitudinal

vector potentials Aφ and A∥, respectively. The azimuthal

current density Jφ ¼ ðℏl=merÞPeφ generates a magnetic

field B ¼ ∇ ×A oriented along the electron’s propagation

direction, i.e., the z axis, where ∇ is the gradient operator

and eφ is the azimuthal unit vector. The vector potential

Aφ at a given position r can then be expressed directly

as a solution to one of Poisson’s equations, namely,

AφðrÞ ¼ μ0=ð4πÞ
R

d3r0Gðr; r0ÞJφðr0Þ, where Gðr; r0Þ ¼
jr − r0j−1 is the corresponding Green function. The

electron’s transverse motion for any value of l is then

considered as a “localized” current loop defined by

Ie ¼ eℏ=ðπmew
2
0Þeφ, as prescribed by the relation

lμB ¼ Ieðπr2lÞ, where rl ¼ w0

ffiffiffiffiffiffiffiffi

l=2
p

is the radius at which

an electron is maximally distributed and w0 is the minimum

radius of its Gaussian distribution.

The vector potential associated with such an azimuthal

current can be expressed in the form

Aφðr; zÞ ¼
μ0Ieη

πv3=2
½uKð2η2Þ − ðuþ vÞEð2η2Þ�; ð3Þ

where u ¼ r2
l
þ r2 þ z2, v ¼ 2rlr, η ¼ v1=2ðuþ vÞ−1=2,

and Kð·Þ and Eð·Þ are the complete elliptic integrals of the

first and second kind, respectively [22]. As depicted in

Fig. 1, we consider such electrons passing through a tube of

thickness w, radius a, conductivity σ, and length L. The
tube radius is large enough to ensure that the electron’s

wave function nearly vanishes at its inner radius. In

particular, for p ¼ 0 mode distributions defined by an

arbitrary l index, the tube radius a is chosen to be much

greater than the radius rl, i.e., a ≫ rl. The conductive tube
can be considered as a sequence of infinitesimal circle

loops positioned at a longitudinal distance h from the tube’s

center. As predicted by Faraday’s law of induction, when

the twisted electron travels through the tube, its longi-

tudinal magnetic field induces an eddy current in each of

the tube’s infinitesimal loops. According to Lenz’s law, the

direction of these currents must generate a magnetic field

Orest

p0
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L
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x
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FIG. 1. System in which an electron vortex beam with a central

energy E and momentum p0, which is in its lower longitudinal

mode [uLGp;lðr;φ; tÞuHG0 ðζÞeiðp0z−EtÞ=ℏ], propagates through a cyl-

inder with conductivity σ and permeability μ. The relative motion

of both entities results in the generation of a current in the

infinitesimal loop of thickness dh.
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that is opposed to the motion of the electron beam. Its

value, however, will depend on the time variation of the

magnetic flux ΦB through each loop, i.e., −∂tΦB. Neither

the electrostatic potential V nor the longitudinal vector

potential A∥ contributes to the magnetic flux ΦB. Only the

azimuthal vector potential Aφ is relevant to the analysis.

Because of the cylindrical symmetry of the electron-tube

system, the vector potential is also independent of φ. The

induced electric field on the circle loop located at position

h, and hence the induced current, is therefore azimuthal and

expressed as Eφ ¼ −∂tAφða; z − hÞ, where z is the elec-

tron’s relative longitudinal position. One can show, by

means of Ohm’s law, dI ¼ σEφðwdhÞ, that the total current
within the tube induced by an electron with a magnetic

dipole moment lμB is given by the expression

I¼ 3

4π

�

p0

me

�

ðσμwaÞðlμBÞ
Z

L=2

−L=2

γ2ðz−hÞdh
½a2þ γ2ðz−hÞ2�5=2 ; ð4Þ

where μ is the tube’s permeability. The proportionality of

this relation describes the quantization of the induced

current within the tube due to the discrete nature of the

electron’s OAM. By integrating Eq. (4), an analytical

expression for this current can be obtained and is plotted

as a function of electron position relative to the cylinder’s

center in Fig. 2(a) for various values of electron OAM. As a

result, one can conceive a device for OAMmeasurement by

detecting the corresponding quantized current induced

inside a tube or a thin loop circuit. As shown in

Fig. 2(a), currents of the order of 10’s of pA are induced

in the loop and could be potentially read out using an

ampere meter (e.g., Tektronix 6485 Picoammeter).

Therefore, this technique can potentially be used to

measure OAM values of twisted electron beams. The

direction of the induced current additionally provides

information on the sign of the OAM value. Moreover,

since the generated current is directly proportional to the

material’s conductivity, it follows that by using a more

conductive material, one could increase the current by

several orders of magnitude. Though these induced

currents are rather short-lived, a combination of fast elec-

tronics, optimized cylinder dimensions, and secondary

methods, such as autocorrelation techniques, can be used

to overcome experimental difficulties related to the

short interaction between the electron and the cylinder

[23]. Our proposed technique has no influence on the

OAM of the electron beam since the electron’s canonical

OAM is conserved in the presence of an external longi-

tudinal magnetic field [24]. The only property that the

measurement affects is the energy carried by the electron

[25]. This is due to the fact that the induced currents

will counter the motion of the electron. The energy

loss due to the electron-tube interaction is ΔE ¼
−ð2πσawÞðp0=meÞ

Rþ∞

−∞
dz

R L=2
−L=2½∂zAφða;zþhÞ�2dh, which

slightly decelerates the electron. This deceleration can

potentially reach a relatively high value, resulting in a large

radiated electromagnetic power emitted from the electron,

as indicated by the Larmor formula. However, due to its

very short time of interaction with the tube, the energy lost

by the electron can only realistically reach a value on the

order of 10−20 eVwhen an electron with an OAM l ¼ 100

is considered (we assume the parameters reported in

Fig. 2). Such energy values are obtained when deducing

the force applied on the electron by the tube. Another way

of obtaining insight on the electron’s energy loss is to

calculate the total energy contained within the fields

generated by the relative motion of the electron. This

energy can be calculated numerically by first finding the

magnetic field generated by the cylinder’s loops of currents

using the Biot-Savart law [26] and then integrating the total

energy stored in these magnetic fields and within the

electric fields associated with the currents themselves. In

particular, this method was employed to produce the

energy density plots found in Figs. 2(b) and 2(c). One

can see that the act of measuring the electron’s OAM has

nearly no effect on the electron itself. Indeed, unlike

projective measurement techniques, where the electron’s

phase front is flattened and projected on a Gaussian mode,

the electron’s OAM does not change during the measure-

ment. For these reasons, the electron’s motion through the

tube leaves it largely unperturbed. Up until this point, we

only considered the casewhere an electron travels perfectly

along the center of the tube. A simple extension of this

analysis reveals that the calculated induced currents are not

significantly affected by breaking the apparatus’s cylin-

drical symmetry. We further discuss how the currents are

affected by asymmetries in experimental apparatuses in the

Supplemental Material [23].

This nondestructive approach to measuring OAM may

create a conceptual paradox. One may mistakenly argue

FIG. 2. (a) Theoretically calculated total induced current in a

conductive tube by an electron vortex beam. We assumed that the

electron beam carries OAM of l ¼ 1, 5 and 10, and that the

conductive tube is made of platinum. Longitudinal cross section

of the tube depicting the relative magnetic energy density

generated by its induced eddy currents when an electron con-

sisting of a high OAM quantum (l ¼ 100) is (b) entering the tube

and (c) in the middle of the tube. Here, we assumed an electron

beam with central energy E ¼ 100 keV and a platinum tube with

length L ¼ 20 μm, thickness w ¼ 1 μm, and radius a ¼ 10 μm.
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that because this measurement leaves the electron’s quan-

tum state (OAM and energy) unchanged, it could challenge

the validity of a wave particle duality experiment (quantum

complementarity). Consider a double-slit experiment in

which, due to an electrostatic interaction, the electron wave

function is split into two parts jui and jdi. Both parts are

then coherently recombined and interfere at a screen, as

illustrated in Fig. 3(a) [27]. The electron’s state can be

described as a superposition of both paths, as if it is in a

coherent superposition of states jui and jdi, resulting in

the formation of an interference pattern on the screen. In the

case when the electron is equally likely to take each path,

its state may be described as jψi ¼ ðjui þ eiδjdiÞ=
ffiffiffi

2
p

,

where δ is the relative phase between the states. The

corresponding density matrix is pure, ρ ≔ jψihψ j ¼ ðjui
huj þ e−iδjuihdj þ eiδjdihuj þ jdihdjÞ=2. In this expres-

sion, the terms e−iδjuihdj and eiδjdihuj carry the interfer-

ence pattern’s phase information and can therefore be

associated with the fringe visibility, which is unity for this

ideal case. The terms juihuj and jdihdj, respectively,

describe the probability of finding an electron in the jui
or jdi path, both of which are equiprobable events for this

case [28].

Now, consider two conductive circuits introduced into

each of the possible paths, as shown in Fig. 3(b). As

mentioned above, these circuits have the capacity to

measure an electron’s OAM with minimal energy loss,

allowing for the detection of whether an OAM-carrying

electron has taken a given path. When no electron travels

through the circuit, the circuit is in a state j0ic. When an

electron with an OAM number l travels through the circuit,

it will induce a quantized current, changing the circuit to a

state defined by jilic, which can be expressed as a super-

position of the loop’s current eigenstates jnic, i.e.,

jilic ¼
P

ncnjnic, where cn ¼ hnjilic is an expansion

coefficient depending on various experimental parameters

describing the interaction between the free electron and the

loop itself. Hence, the system consisting of both circuits

can be described by the tensor product jiuicjidic, where
jiuic and jidic, respectively, represent the state associated

with the electrical current going through circuits in the jui
and jdi paths. Because the circuit has the ability to provide

information about which path the electron has taken, it

provides information about the particle nature of the

electron, while the presence of fringes gives information

about its wave nature. Therefore, the presence of currents

and fringes would seemingly allow one to detect both the

electron’s wave and particle nature simultaneously, violat-

ing the principle of complementarity.

However, prior to going through any of the circuits, the

system consisting of the electron and the two circuits

can initially be expressed as jψ ii ¼ ð1=
ffiffiffi

2
p

Þðjui þ
eiδjdiÞj0uicj0dic. After the electron has gone through

either of the circuits, the system’s final wave function

becomes jψfi ¼ ð1=
ffiffiffi

2
p

Þðjuijiluicj0dic þ eiδjdij0uicjildicÞ,
where the electron is entangled with the circuits. The

circuits thus act as a nonlocal “environment” and cause

the electron state to partially decohere [29]. In order to

observe the effect of the circuits’ presence on the obtained

interference pattern, we take the partial trace over the

circuits’ states. The reduced density matrix will correspond

to ðjuihuj þ e−iδαjuihdj þ eiδα�jdihuj þ jdihdjÞ=2, where
α ¼ h0ujilujihildj0di. One can observe that the visibility

terms of the reduced density matrix in the fjui; jdig basis

will be modified by the factor α < 1, where for identically

coupled circuits, i.e., jildi ¼ jilui, α ¼ jc0j2. This coeffi-

cient, defined by h0jilic, will vary with the coupling

between the free electron and the circuit’s state, which is

determined by various experimental parameters. Such

parameters, which include the circuit’s radius, for instance,

can be modified to provide a varying α coefficient affecting

the fringe visibility.

In conclusion, we present a nondestructive technique that

can be used to measure the OAM of an electron beam. The

technique is based on the interaction of the quantized

magnetic dipole moment of the twisted electron and a

conductive tube. The beam’s OAM components are mea-

sured by detecting the quantized induced eddy currents in

the tube. These electrons suffer minimal energy losses

and the method is nondestructive. To illustrate the limi-

tations of the method, we also describe the possibility of

using such a device in a gedanken quantum experiment,

in which the knowledge of an electron’s presence is

needed. Doing so would result in reducing the visibility

of observed interference as prescribed by complementarity.

A prospective extension to the method could be using the

tube to generate radiation with an approach similar to that

of Ref. [30] through the formation of plasmons by

introducing a discontinuity in the tube, such as the absence

of conductive material at a given azimuthal angle.

BP

BP

BP

BP(b)

(a)

FIG. 3. Proposed experiment in which the effect of conductive

circuits in an OAM-carrying electron double-slit experiment is

considered. (a) The electron double-slit experiment in which no

circuits are present. (b) The electron double-slit experiment in

which a circuit is present in each of the possible paths, jui or jdi,
taken by the electron where the coefficient α ¼ 0 (i.e., the

electron and the loops are perfectly coupled). BP annotations

refer to biprisms.
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However, this would result in larger energies being lost by

passing electrons. This method’s minimal electron energy

loss is an essential aspect to its nondestructive nature

which, along with the preservation of the electron’s original

OAM, presents this technique as a viable alternative to

modern projective measurements.
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