Hauptseite > Publikationsdatenbank > The pathway to GTPase activation of elongation factor SelB on the ribosome > print |
001 | 827054 | ||
005 | 20210129225740.0 | ||
024 | 7 | _ | |a 10.1038/nature20560 |2 doi |
024 | 7 | _ | |a WOS:000388916600051 |2 WOS |
024 | 7 | _ | |a altmetric:13599496 |2 altmetric |
024 | 7 | _ | |a pmid:27842381 |2 pmid |
037 | _ | _ | |a FZJ-2017-01260 |
082 | _ | _ | |a 070 |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Fischer, Niels |b 0 |e Corresponding author |
245 | _ | _ | |a The pathway to GTPase activation of elongation factor SelB on the ribosome |
260 | _ | _ | |a London [u.a.] |b Nature Publ. Group |c 2016 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1485873212_18214 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNASec) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNASec recodes a UGA stop codon next to a downstream mRNA stem–loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNASec binding by SelB and show large-scale rearrangements of Sec-tRNASec. Upon initial binding of SelB–Sec-tRNASec to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNASec covering the sarcin–ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNASec away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases. |
536 | _ | _ | |0 G:(DE-HGF)POF3-551 |a 551 - Functional Macromolecules and Complexes (POF3-551) |c POF3-551 |f POF III |x 0 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Neumann, Piotr |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Bock, Lars V. |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Maracci, Cristina |b 3 |
700 | 1 | _ | |0 P:(DE-Juel1)138909 |a Wang, Zhe |b 4 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Paleskava, Alena |b 5 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Konevega, Andrey L. |b 6 |
700 | 1 | _ | |0 P:(DE-Juel1)132018 |a Schröder, Gunnar |b 7 |u fzj |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Helmut, Grubmüller |b 8 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Ficner, Ralf |b 9 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Rodnina, Marina V. |b 10 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Stark, Holger |b 11 |e Corresponding author |
773 | _ | _ | |0 PERI:(DE-600)1413423-8 |a 10.1038/nature20560 |p 80–85 |t Nature |v 540 |x 0028-0836 |y 2016 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827054/files/nature20560.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827054/files/nature20560.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827054/files/nature20560.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827054/files/nature20560.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827054/files/nature20560.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827054/files/nature20560.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:827054 |p VDB |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)132018 |a Forschungszentrum Jülich |b 7 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-551 |1 G:(DE-HGF)POF3-550 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |v Functional Macromolecules and Complexes |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |
915 | _ | _ | |0 StatID:(DE-HGF)1040 |2 StatID |a DBCoverage |b Zoological Record |
915 | _ | _ | |0 StatID:(DE-HGF)0550 |2 StatID |a No Authors Fulltext |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b NATURE : 2015 |
915 | _ | _ | |0 StatID:(DE-HGF)9930 |2 StatID |a IF >= 30 |b NATURE : 2015 |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |
915 | _ | _ | |0 StatID:(DE-HGF)1060 |2 StatID |a DBCoverage |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |
915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-6-20110106 |k ICS-6 |l Strukturbiochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|