001     827054
005     20210129225740.0
024 7 _ |a 10.1038/nature20560
|2 doi
024 7 _ |a WOS:000388916600051
|2 WOS
024 7 _ |a altmetric:13599496
|2 altmetric
024 7 _ |a pmid:27842381
|2 pmid
037 _ _ |a FZJ-2017-01260
082 _ _ |a 070
100 1 _ |0 P:(DE-HGF)0
|a Fischer, Niels
|b 0
|e Corresponding author
245 _ _ |a The pathway to GTPase activation of elongation factor SelB on the ribosome
260 _ _ |a London [u.a.]
|b Nature Publ. Group
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1485873212_18214
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNASec) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNASec recodes a UGA stop codon next to a downstream mRNA stem–loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNASec binding by SelB and show large-scale rearrangements of Sec-tRNASec. Upon initial binding of SelB–Sec-tRNASec to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNASec covering the sarcin–ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNASec away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases.
536 _ _ |0 G:(DE-HGF)POF3-551
|a 551 - Functional Macromolecules and Complexes (POF3-551)
|c POF3-551
|f POF III
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Neumann, Piotr
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Bock, Lars V.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Maracci, Cristina
|b 3
700 1 _ |0 P:(DE-Juel1)138909
|a Wang, Zhe
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Paleskava, Alena
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Konevega, Andrey L.
|b 6
700 1 _ |0 P:(DE-Juel1)132018
|a Schröder, Gunnar
|b 7
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Helmut, Grubmüller
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Ficner, Ralf
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Rodnina, Marina V.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Stark, Holger
|b 11
|e Corresponding author
773 _ _ |0 PERI:(DE-600)1413423-8
|a 10.1038/nature20560
|p 80–85
|t Nature
|v 540
|x 0028-0836
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/827054/files/nature20560.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827054/files/nature20560.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827054/files/nature20560.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827054/files/nature20560.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827054/files/nature20560.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827054/files/nature20560.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:827054
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132018
|a Forschungszentrum Jülich
|b 7
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-551
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)0550
|2 StatID
|a No Authors Fulltext
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NATURE : 2015
915 _ _ |0 StatID:(DE-HGF)9930
|2 StatID
|a IF >= 30
|b NATURE : 2015
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21