001     827065
005     20240610121341.0
024 7 _ |2 doi
|a 10.1021/acsphotonics.5b00667
024 7 _ |2 Handle
|a 2128/13699
024 7 _ |a WOS:000376333700008
|2 WOS
024 7 _ |a altmetric:6743858
|2 altmetric
037 _ _ |a FZJ-2017-01271
082 _ _ |a 620
100 1 _ |0 P:(DE-HGF)0
|a Genç, Aziz
|b 0
245 _ _ |a Tuning the Plasmonic Response up: Hollow Cuboid Metal Nanostructures
260 _ _ |a Washington, DC
|b ACS
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1485875827_18209
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a We report the fine-tuning of the localized surface plasmon resonances (LSPRs) from ultraviolet to near-infrared by nanoengineering the metal nanoparticle morphologies from solid Ag nanocubes to hollow AuAg nanoboxes and AuAg nanoframes. Spatially resolved mapping of plasmon resonances by electron energy loss spectroscopy (EELS) revealed a homogeneous distribution of highly intense plasmon resonances around the hollow nanostructures and the interaction, that is, hybridization, of inner and outer plasmon fields for the nanoframe. Experimental findings are accurately correlated with the boundary element method (BEM) simulations demonstrating that the homogeneous distribution of the plasmon resonances is the key factor for their improved plasmonic properties. As a proof of concept for these enhanced plasmonic properties, we show the effective label free sensing of bovine serum albumin (BSA) of single-walled AuAg nanoboxes in comparison with solid Au nanoparticles, demonstrating their excellent performance for future biomedical applications.
536 _ _ |0 G:(DE-HGF)POF3-143
|a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Patarroyo, Javier
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Sancho-Parramon, Jordi
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Arenal, Raul
|b 3
700 1 _ |0 P:(DE-Juel1)145413
|a Duchamp, Martial
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Gonzalez, Edgar E.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Henrard, Luc
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Bastús, Neus G.
|b 7
700 1 _ |0 P:(DE-Juel1)144121
|a Dunin-Borkowski, Rafal
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Puntes, Victor F.
|b 9
|e Corresponding author
700 1 _ |0 P:(DE-HGF)0
|a Arbiol, Jordi
|b 10
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2745489-7
|a 10.1021/acsphotonics.5b00667
|g Vol. 3, no. 5, p. 770 - 779
|n 5
|p 770 - 779
|t ACS photonics
|v 3
|x 2330-4022
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/827065/files/acsphotonics.5b00667.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827065/files/acsphotonics.5b00667.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827065/files/acsphotonics.5b00667.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827065/files/acsphotonics.5b00667.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827065/files/acsphotonics.5b00667.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827065/files/acsphotonics.5b00667.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:827065
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144121
|a Forschungszentrum Jülich
|b 8
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 LIC:(DE-HGF)PublisherOA
|2 HGFVOC
|a Free to read
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ACS PHOTONICS : 2015
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b ACS PHOTONICS : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21