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We introduce the concept of network susceptibilities quantifying the response of the collective dynamics of

a network to small parameter changes. We distinguish two types of susceptibilities: vertex susceptibilities and

edge susceptibilities, measuring the responses due to changes in the properties of units and their interactions,

respectively. We derive explicit forms of network susceptibilities for oscillator networks close to steady states

and offer example applications for Kuramoto-type phase-oscillator models, power grid models, and generic flow

models. Focusing on the role of the network topology implies that these ideas can be easily generalized to other

types of networks, in particular those characterizing flow, transport, or spreading phenomena. The concept of

network susceptibilities is broadly applicable and may straightforwardly be transferred to all settings where

networks responses of the collective dynamics to topological changes are essential.

DOI: 10.1103/PhysRevE.95.012319

I. INTRODUCTION

Susceptibility constitutes a key concept in physics, from

statistical mechanics to condensed matter theory and exper-

iments. In these fields, susceptibility quantifies the change

of a systems’ state, typically measured by order parameters,

in response to a change in some external field. In simple

settings, susceptibility is well approximated by linear response

theory and one global order parameter changes in response.

Generally, there can be many order parameters, as for instance

the site-dependent average spin in the theory of magnetism.

While ideal solids are organized in the form of perfectly

periodic crystals with, e.g., nearest-neighbor interactions,

many natural and engineered complex systems are organized

in networks with a rich variety of their underlying interaction

topologies [1,2]. The susceptibility of such a networked

system, i.e., its response to changes in their parameters, is

thus essentially determined by their topology. Furthermore,

unlike in periodic systems the response depends crucially on

the location of the perturbation. Given that there are different

types of local properties that may change, it is not yet clear how

to appropriately define susceptibilities in a networked system

and consequentially what such susceptibilities would tell us

about the collective dynamics.
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In this article we introduce two types of susceptibilities in

network dynamical systems. Focusing on changes to steady-

state operating points, we first systematically study the impact

of small local perturbations of single units and effective inter-

actions in networks. As a key class of network dynamics, we

analyze the susceptibilities of oscillator networks describing

the dynamics of various natural and manmade systems. We

define both vertex susceptibilities and edge susceptibilities

to qualitatively and quantitatively distinguish the responses

to changes of single-unit and single-interaction properties,

respectively. In particular, we reveal how the interaction

topology of the network jointly with the type and location

of the perturbation relative to the response location determine

the response strength. These susceptibilities are shown to be

related to, but not equal to, established measures of network

centrality. Several applications, in particular to Kuramoto

phase oscillator and power grid networks, are discussed. We

specifically identify certain instances of vertex susceptibilities

for electric power grid models as power transfer distribution

factors known in electric engineering. Network susceptibilities

are readily generalizable to all kinds of supply and transport

networks as well as network dynamical systems whose

dynamics exhibits a standard flow structure.

II. NETWORK SUSCEPTIBILITIES

A continuous time network dynamical system can be

described by the equations of motion of N variables (the

“vertices”),

dxi

dt
= Fi(x1,x2, . . . ,xN ; p1,p2, . . . ,pM ), (1)
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where p1,p2, . . . ,pM are tunable. The network interactions

(the “edges”) are defined by which variables xj appear

in the equation of motion of xi . Now we define network

susceptibilities in the following.

Definition 1. Let x∗ = (x∗
1 ,x∗

2 , . . . ,x∗
N ) be a steady state

for a network dynamical system defined by Eq. (1). Suppose

that on applying a small perturbation to one of the network

parameters pk ,

pk → pk + ε, (2)

the fixed point changes by a certain amount,

x∗ → x∗
′

(ε). (3)

Then the network susceptibility due to parameter pk is defined

as

χ(pk )→j = lim
ε→0

x∗′

j (ε) − x∗

ε
. (4)

We note that this definition can easily be extended to

dynamics with other invariant sets (e.g., limit cycles) instead

of fixed points, and also to stochastic dynamics.

III. DYNAMICS OF OSCILLATOR NETWORKS

As a cornerstone example we analyze the susceptibility of

a network of coupled oscillators. The celebrated Kuramoto

model [3] characterizes the collective dynamics of a variety

of dynamical systems ranging from chemical reactions [4]

and neural networks [5] to coupled Josephson junctions [6],

laser arrays [7], and optomechanical systems [8]. In the

Kuramoto model, N phase oscillators are coupled via their

phase differences. The rate of change of each phase φj is

given by

dφj

dt
= ωj +

N∑

ℓ=1

Kjℓ sin(φℓ − φj ), (5)

where ωj is the intrinsic frequency of the j th oscillator, j ∈
{1, . . . ,N}, and Kjℓ = Kℓj denotes the coupling strength of

two oscillators j and ℓ.

A similar model describes the frequency dynamics of

complex power grids and has gained a strong interest re-

cently [9–14]. The model describes the dynamics of rotating

synchronous generators and motors, representing power plants

and consumers, respectively. Each machine is characterized

by the power it generates (Pj > 0) or consumes (Pj < 0)

and rotates with a frequency close to the grid’s reference

frequency � of 2π × 50/60 Hz, such that its phase is written

as θj (t) = �t + φj (t). The dynamics of the phases is given by

the swing equation [15,16],

Mj

d2φj

dt2
+ Dj

dφj

dt
= Pj +

N∑

ℓ=1

Kjℓ sin(φℓ − φj ), (6)

where Mj is proportional to the moment of inertia and

Dj is proportional to the damping torque of the respective

synchronous machine. This “oscillator model” assumes that

all consumers can be described as synchronous motors with

a nonvanishing inertia Mj . (It should be noted that since the

oscillator model is valid only for the high-voltage transmission

grid, the consumers do not represent individual electrical

devices in each household, but rather whole cities or neighbor-

hoods.) In the “structure-preserving model” used in electric

power engineering [17] one assumes different consumers. In

contrast to a synchronous machine this type of consumer

cannot store any kinetic energy, such that the inertia vanishes.

Hence, the equations of motion of the structure-preserving

model are still given by Eq. (6), but with Mj = 0. In the

oscillator model as well as the structure-preserving model the

power flow from machine k to machine j is given by

Fjk = Kjk sin(φk − φj ), (7)

where Kjk is the maximum transmission capacity, which is

proportional to the susceptance of the respective transmission

line. The relative load of the transmission line is defined

as

Ljk :=
Fjk

Kjk

= sin(φk − φj ). (8)

The two models admit different forms of synchrony. The Ku-

ramoto model was initially introduced to study the emergence

of partial synchronization when the coupling of the oscillators

is increased [3]. A power grid must be operated in a state of

perfect synchronization: all phase differences φk − φj must be

constant in time to enable a steady power flow [Eq. (7)]. In this

article we analyze how such a phase-locked state responds to a

local change in the network and in particular how this change

depends on the topology of the network.

Transforming to a corotating frame, the phase-locked states

are then just the steady states of Eq. (5) or Eq. (6), respectively,

which are determined by the algebraic equation

0 = Pj +
N∑

ℓ=1

Kjℓ sin(φℓ − φj ), (9)

such that we can treat the Kuramoto model and the power

grid model on the same footing. However, the perspective

of a flow network is particularly helpful in understanding

the mathematical results introduced below. We note that the

steady states do not depend on the mechanical properties of

the individual machines, i.e., the moments of inertia Mj and

the damping coefficients Dj .

IV. LINEAR RESPONSE THEORY AND NETWORK

SUSCEPTIBILITIES

In a complex network there are two general scenarios

for a microscopic change of the dynamical system: (1) the

modification of an edge weight (signifying, e.g., an electrical

transmission line capacity) or (2) the modification of a vertex

property (e.g., the power generation of a power plant) of the

system. In the following, we introduce a linear response theory

for both scenarios.

A. Perturbation at a single edge

In the first scenario we consider the coupling matrix Kij

being perturbed slightly to yield the new perturbed matrix K ′
ij ,
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which differs from Kij only at a single edge (s,t):

K ′
ij = Kij + κij , (10)

κij =
{
κ for (i,j ) = (s,t) and (i,j ) = (t,s)

0 all other edges.
(11)

This perturbation causes the steady-state phases of the network

to change from φj to φ′
j . The new steady-state Eq. (9) now

reads

0 = Pj +
N∑

i=1

K ′
ij sin(φ′

i − φ′
j ), (12)

∀ j ∈ {1, . . . ,N}. (13)

In the following we calculate this perturbation within a

linear response theory. We note that the steady state is defined

only up to a global phase shift. Throughout this article we fix

this phase such that
∑

j φj = 0.

We expand the steady-state condition Eq. (13) to leading

order in κij and

ξj := φ′
j − φj , (14)

and subtract Eq. (9), to obtain

0 =
N∑

i=1

κij sin(φi − φj ) +
N∑

i=1

Kij cos(φi − φj )(ξi − ξj )

= κLst (δjs − δj t ) −
N∑

i=1

Ajiξi (15)

for all j = 1, . . . ,N using the Kronecker symbol δ. In the

last step we have used the definition of the flow Eq. (7), the

definition of relative load Eq. (8), and the perturbation matrix

Eq. (11). Furthermore, we have introduced the matrix

Aij :=
{
−K̃ij for i �= j

+
∑

ℓ K̃ℓj i = j
, where

K̃ij := Kij cos(φi − φj ). (16)

In a short-hand vectorial notation, Eq. (15) then reads

Aξ = κLst q(st), (17)

using the vector q(st) ∈ R
N with the components

q(st),j = (δs,j − δt,j ). (18)

We note that the matrix A is singular such that it cannot be

inverted. However, the vector q is orthogonal to the kernel of

A, which is spanned by the vector (1,1, . . . ,1)T such that this

is no problem. In order to formally solve Eq. (17) we can thus

use the Moore-Penrose pseudoinverse of A, which we will call

T := A+ in the following. Thus, we find

ξ = κLst T qst . (19)

The perturbed flow Eq. (7) over an edge (i,j ) is then given by

F ′
ij = (Kij + κij ) sin(φj − φi + ξj − ξi)

= Kij sin(φj − φi) + κij sin(φj − φi)

+Kij cos(φj − φi)(ξj − ξi), (20)

up to first order in κ and ξ . Using Eq. (19), this result reads

F ′
ij = Fij + κLst [(δisδj t − δjsδit )

+ K̃ij (Tjs − Tj t − Tis + Tit )]. (21)

B. Edge susceptibilities

Depending on the application we want to measure different

effects caused by the perturbation at the edge (s,t). First, we

quantify how much the phase of a single oscillator j is affected

by the edge-to-vertex susceptibility, using Eq. (19),

χ(st)→j := lim
κ→0

φ′
j − φj

κ
= Lst (Tjs − Tj t ). (22)

To measure the change of the oscillator state on a global scale in

response to perturbation at a single edge, we define the global

edge susceptibility as the norm of the local susceptibilities

χ2
(st) := lim

κ→0

∑
j |φ′

j − φj |2

κ2

=
N∑

j=1

χ2
(st)→j = L2

st

N∑

j=1

(Tjs − Tj t )
2 . (23)

For applications to flow networks, such as the power grid

model Eq. (6), we are especially interested in how the flows

change as this determines the stability of the grid. In particular,

stability can be lost when a single edge becomes overloaded.

Thus, we define the edge-to-edge susceptibility as the change

of flow at another edge,

η(st)→(ij ) := lim
κ→0

F ′
ij − Fij

κ
. (24)

Using Eq. (21) this relation reads

η(st)→(ij ) = Lst [(δisδj t − δjsδit )

+ K̃ij (Tjs − Tj t − Tis + Tit )]. (25)

We conclude that the effects of a perturbation at a single

edge (s,t) as measured by the susceptibilities defined above

are proportional to the load of edge Lst . We note that this

edge susceptibility formalism can be used to detect [18] the

phenomenon of Braess paradox, where the flow at the most

loaded edge (i,j ) increases on increasing the coupling strength

of one edge (s,t). To be precise, Braess paradox will occur on

increasing the coupling strength at edge (s,t) if the edge-to-

edge susceptibility of the most loaded edge (i,j ) and the flow

at that edge has the same sign,

η(st)→(ij )Fij > 0. (26)

Furthermore, the susceptibilities are essentially given by the

matrix T , the pseudoinverse of A. The properties of these

matrices will be analyzed in detail in the following sections.

C. Perturbation at a single vertex

The above calculations can be readily generalized to

analyze the change of the steady state in response to a local

perturbation of a single vertex property. To this end we consider

a change of the power injected at a single vertex s. However,

a steady state of Eq. (6) exists only if the power is balanced

012319-3



DEBSANKHA MANIK et al. PHYSICAL REVIEW E 95, 012319 (2017)

such that we consider a small perturbation of the power vector

of the form

P ′
j = Pj + p (δj,s − 1/N ). (27)

Expanding the definition of a steady state to leading order in

p and ξj := φ′
j − φj then yields

0 = p (δj,s − 1/N ) +
N∑

i=1

K̃ij (ξi − ξj )

= p (δj,s − 1/N ) +
N∑

i=1

Aijξi . (28)

Solving this equation for the changes ξ yields

ξ = p T rs, (29)

with the vector rs ∈ R
N whose components are given by

rs,j = δs,j . (30)

D. Vertex susceptibilities

In analogy to the case of a perturbed edge discussed in

Sec. (IV B) we define the vertex-to-vertex susceptibility as

χs→j := lim
p→0

φ′
j − φj

p
= Tjs, (31)

the global vertex susceptibility as

χ2
s :=

N∑

j=1

χ2
s→j =

N∑

j=1

T 2
js, (32)

and the vertex-to-edge susceptibility as

ηs→(ij ) := lim
p→0

F ′
ij − Fij

p
= K̃ij (Tjs − Tis). (33)

We note that measures similar to the vertex-to-vertex sus-

ceptibility χs→j are used in electric power engineering where

they are called power transfer distribution factors [19,20]. In

this context one generally uses a fixed reference or slack node,

which absorbs the power change p, such that Eq. (27) is

modified to

P ′
j = Pj + p (δj,s − δj,slack). (34)

E. Properties of the matrix A

We have shown that the response of a network to a local

perturbation is essentially given by the matrix T , which is

the Moore-Penrose pseudoinverse of the matrix A defined

in Eq. (16). Before we discuss the potential applications of

the network susceptibilities we thus have a closer look at the

properties of the matrix A.

The matrix A encodes the dynamical stability and syn-

chrony of steady states [21,22]. A steady state of the Kuramoto

model or the power grid model defined by Eq. (6) is

dynamically stable if and only if A is positive semidefinite,

i.e., all its eigenvalues aj ,1 � j � N are nonnegative. For the

sake of simplicity we fix the ordering of the eigenvalues such

that 0 = a1 � a2 � a3 � . . . aN . We have to take into account

that A always has one eigenvalue a1 = 0. The corresponding

eigenvector is (1,1, . . . ,1), signifying that a small perturbation

that is exactly the same in all phase angles is neutrally stable.

However, this is merely due to the steady state itself being

arbitrary up to a constant global phase shift. Stable steady

states can emerge or disappear when a system parameter is

varied through an (inverse) saddle node bifurcation at which

one eigenvalue vanishes, a2 → 0.

In particular, A is positive semidefinite if the relation

cos(φi − φj ) > 0 holds for all edges (i,j ) of the network and

the network is globally connnected. Stable steady states that

do not satisfy this relation typically exist only at the edge of

the stable parameter region [21]. We can thus assume that

during normal operation we always have cos(φi − φj ) � 0 for

all edges such that we can use the following relations:

cos(φi − φj ) =
√

1 − sin(φi − φj )2 � 0

⇒ K̃ij = Kij cos(φi − φj ) =
√

K2
ij − F 2

ij . (35)

The expression K̃ij can be understood as the free capacity of

an edge (ij ), which can be used to respond to the perturbation

and is thus referred to as the responsive capacity.

For normal operation, cos(φi − φj ) � 0 for all edges (i,j ),

the nondiagonal entries of the matrix A are all nonpositive such

that A is a Laplacian matrix for which many properties are

known [2]. In particular, the eigenvalues of a Laplacian matrix

satisfy 0 = a1 � a2 � · · · � aN , where a2 is an algebraic

measure for the connectivity of the underlying network [23,24].

V. SUSCEPTIBILITY AND CONNECTIVITY

A. Scaling properties of network susceptibilities

The susceptibilities are especially large in the limit of a

weakly connected network. For a power grid this corresponds

to the scenario of high loads when the responsive capacities

K̃ij become small. In the following we analyze this case in

detail for a perturbation at a single edge (s,t) [cf. Eq. (11)].

The case of a vertex perturbation is discussed briefly at the end

of this section.

Throughout this section we assume the case of “normal”

operation; i.e., we assume that K̃ij � 0 for all edges (i,j ).

Then the matrix A is a Laplacian matrix with eigenvalues

0 = a1 � a2 � · · · � aN and the associated eigenvectors vn.

We can then formally solve Eq. (17) for ξ with the result

ξ = κLst

N∑

n=2

1

an

(vn · qst )vn. (36)

The term n = 1 does not contribute since we have fixed the

global phase such that
∑

j ξj = 0. This expression shows four

important properties of the network susceptibility:

(1) The response ξ and thus also the edge susceptibilities

scale with the load of the perturbed edge Lst = Fst/Kst . For

a complete breakdown of an edge (s,t), we have κ = −Kst ,

such that ξ scales with the flow Fst of the defective edge.

The scenario of a complete breakdown is further discussed in

Sec. VII.

(2) The prefactors 1/an decrease with n. In particular

for a weakly connected network the algebraic connectivity

a2 becomes very small [2,23,24], such that the term n = 2
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dominates the sum. Then the susceptibility of all edges in the

network scale inversely with the algebraic connectivity a2. This

proves our claim that the susceptibility is large if the network

defined by the responsive capacities K̃ij is weakly connected.

(3) For a weakly connected network, the edge susceptibility

scales with the overlap |v2 · qst |, where v2 is the so-called

Fiedler vector. This overlap can be interpreted as a measure

of the local algebraic connectivity of the nodes s and t . To

see this, note that the Fiedler vector can be used to partition

a graph into two weakly connected parts [2,24]. The overlap

with the vector qst is largest if the two nodes s and t are in

different parts and thus weakly connected.

(4) In the limit of a disconnected network the response ξ

to a perturbation at the edge (s,t) diverges if the edge links

the weakly connected components. If the perturbation occurs

within one component, then the response remains finite. This

will be shown in detail in the following section.

(5) The global edge susceptibility defined in Eq. (23) can

be expressed as

χ2
(st) = L2

st

N∑

n=2

(vn · qst )

a2
n

, (37)

where we have used Eq. (36) for the phase response. This

quantity measures the average phase response to the perturba-

tion of a single edge (s,t). An example is shown in Fig. 1 for a

synthetic power grid model based on the topology of the British

high-voltage grid. One observes that the global susceptibility

of an edge (s,t) is essentially determined by the load Lst , the

connectivity of the network, and the location of the edge within

the network. Edges are highly susceptible if they are heavily

loaded or connect two components of the grid. In the shown

example we observe two highly susceptible edges connecting

the northern part to the rest of the grid. Averaging the global

susceptibilities χst over all edges (s,t) in the network, we find

an almost perfect proportionality with the inverse algebraic

connectivity 1/a2. If the transmission capacity K of the edges

increases, the algebraic connectivity a2 also increases and the

grid becomes less susceptible to perturbations.

B. The weakly connected limit

To obtain a more quantitative understanding of the sus-

ceptibility in a weakly connected network we assume that

the network is decomposed into two components of size

N1 and N2 = N − N1, respectively. In the limit of complete

disconnection, the Laplacian matrix also decomposes

A(0) =

(
A

(0)
1 0

0 A
(0)
2

)
, (38)

with A
(0)
1 ∈ R

N1×N1 and A
(0)
2 ∈ R

N2×N2 . As usual for a Lapla-

cian matrix the lowest eigenvalue vanishes, a1 = 0, and the

associated eigenvector is given by

v1 =
1

√
N

(1,1, . . . ,1)T . (39)

In the disconnected limit also the second eigenvalue (the

algebraic connectivity) vanishes, a
(0)
2 = 0. The associated

eigenvector, the Fiedler vector, is given by

v
(0)
2 =

1
√

N
(
√

N2/N1, . . .︸ ︷︷ ︸
N1 times

,−
√

N1/N2, . . .︸ ︷︷ ︸
N2 times

)T . (40)

Here and in the following the superscript (0) denotes the

limiting case of a complete disconnection of the network. For
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FIG. 1. The global edge susceptibility χ(st) in a model power grid. (a) Coarse-grained topology of the British high-voltage power transmission

grid [9,25]. We randomly choose 60 nodes to be generators with Pj = +1 (�) and 60 nodes to be consumers with Pj = −1 (◦). The transmission

capacity of all edges is given by K = 4 in arbitrary units. The color map shows the load |Lst | of each edge. (b) Color map plot of the global

edge susceptibility χst . (c) For a given network, the susceptibility is approximately proportional to the load of the edge |Lst |. It is increased

if the edge (s,t) couples two weakly connected components of the responsive capacity graph K̃ , indicated by a large overlap with the Fiedler

vector |qst · v2| (shown as a color code and in the inset). (d) On a global scale, the average susceptibility is proportional to the inverse algebraic

connectivity 1/a2. The plot shows 1/a2 (�, right scale) and the ratio χst/|Lst | averaged over all edges (◦, left scale) as a function of the

transmission capacity K . The shading shows the standard deviation of χst/|Lst |.
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simplicity we assume that the two components are not further

disconnected, such that a
(0)
3 > 0.

To analyze the case of a weakly connected network, we

consider a single weak link at position (c,d) between the two

components. The Laplacian is then given by A = A(0) + A′,
with

A′
cd = A′

dc = −k, A′
cc = A′

dd = +k, (41)

and A′
ij = 0 otherwise. The connection strength k of the edge

(c,d) is assumed to be small, such that we can calculate

the eigenvalues and eigenvectors using Rayleigh-Schrödinger

perturbation theory (see, e.g., Ref. [26]). We then find the

algebraic connectivity,

a2 = k
N1 + N2

N1N2

+ O(k2), (42)

and the Fiedler vector,

v2 = v
(0)
2 + k

√
N1 + N2

N1N2

N∑

n=3

(
v(0)

n · qcd

)

a
(0)
n

v(0)
n + O(k2),

(43)

where qcd is defined as in Eq. (18).

To calculate the response of the network ξ we need the

overlap of the vector qst [see Eq. (36)] with the eigenvectors

of A, in particular the overlap with the Fiedler vector. The result

depends crucially on the location of the perturbed edge (s,t).

If this edge connects the two components, i.e., (s,t) = (c,d),

we find

v2 · qst =

√
N1 + N2

N1N2

+ O(k), (44)

such that the response diverges as k−1:

ξ =
κLst

k

√
N1N2

N1 + N2

v
(0)
2 + O(k0). (45)

If the edge (s,t) lies within one component, then

v2 · qs,t = k

√
N1 + N2

N1N2

N∑

n=3

(
v(0)

n · qcd

)(
v(0)

n · qst

)

a
(0)
n

+ O(k2),

such that the response remains finite in the limit k → 0:

ξ = κLst

√
N1N2

N1 + N2

N∑

n=3

(
v(0)

n · qcd

)(
v(0)

n · qst

)

a
(0)
n

v
(0)
2

+ κLst

N∑

n=3

(
v(0)

n · qst

)

a
(0)
n

v(0)
n . (46)

For a perturbation at a single vertex as defined in Eq. (27)

the response will always diverge in the limit k → 0. Assuming

without loss of generality that the perturbed vertex s is an

element of the component 1 we find that

ξ =
p

k

N2

N1N2

(N2/N1, . . . ,N2/N1︸ ︷︷ ︸
N1 times

,−1, . . . , − 1︸ ︷︷ ︸
N2 times

)T (47)

to leading order.

VI. APPLICATIONS

A. The relation to centralities

Various centrality measures have been defined to quantify

the importance of single vertices and edges in complex

networks [27]. Centrality measures based on current flows [28]

are heavily used in different areas of network science and are

directly related to susceptibility measures as defined in the

present article. To illustrate this, consider a network of ohmic

resistors with conductances Gij . An electrical current flows

through the network with I source
j being the current in- or outflow

at vertex j . The current through a particular edge (i,j ) of the

network is given by the voltage drop across the edge, such that

Iji = Gji(Vj − Vi). (48)

At each vertex the current is conserved such that Kirchhoff’s

law,

N∑

i=1

Iji =
N∑

i=1

Gji(Vj − Vi) = I source
j , (49)

is satisfied for all j = 1, . . . ,N . Defining the Laplacian matrix

of the conductances (the so-called nodal conductance matrix),

Aij :=
{

−Gij for i �= j

+
∑

ℓ Gℓj i = j
, (50)

and its Moore-Penrose pseudoinverse T := A+, the voltages

are given by

V = T I source. (51)

For the definition of centrality measures [27] one considers

the situation that a unit current flows into the network at a

single vertex s and out at a different vertex t . Then we have

the voltages,

Vj = Tjs − Tj t , (52)

and the current flowing over the edge (i,j ) is given by

Iji = Gji(Tjs − Tj t − Tis + Tit ). (53)

The current flow betweenness centrality of an edge (i,j ) is

then defined as the absolute current flowing through the edge

averaging over all scenarios of the in- and outflow, i.e., all pairs

(s,t) [27]:

b(i,j ) :=
2

N (N − 1)

∑

s<t

Gji |Tjs − Tj t − Tis + Tit |. (54)

Correspondingly, the betweenness centrality of a vertex j is

defined as

bj :=
1

N (N − 1)

∑

s<t

N∑

i=1

Gji |Tjs − Tj t − Tis + Tit |

=
N∑

i=1

1

2
b(i,j ). (55)

We directly see the analogies to the definition of the network

susceptibilities if we identify the conductance Gij with the

responsive capacity K̃ij . In particular, the edge betweenness

centrality defined in Eq. (54) coincides with the average of the

normalized edge-to-edge susceptibility ηst→ij/|Ls,t | except
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for a slight difference in the term (s,t) = (i,j ) that vanishes as

1/N2.

However, in this article we generalize the idea of centralities

based on current flow in several ways. First of all, we consider

two different scenarios for the in- and outflow of the network:

First, for the edge susceptibilities we consider an inflow at

vertex s and outflow at vertex t with strength Lst as in Ref. [27],

I source
j = Lst (δjs − δst ). (56)

Second, for the vertex susceptibilities we assume a unit inflow

at vertex s and equal outflow at all other vertices, such that

I source
j = δjs −

1

N
. (57)

Third, we analyze not only the change of the flows, as in the

edge-to-edge susceptibilities, but also the change of the state

variables ξj , which correspond to the voltages in the resistor

networks. In this sense, the global susceptibilities χ2
(st) and

χ2
s are given by the variance of the voltages in the network.

Therefore, they quantify the global response of the network to

a local in- or outflow in terms of the average variation of all

voltages.

B. Relation to resistance distances

In a manner similar to Sec. VI A, the concept of suscep-

tibilities can be understood in terms of resistance distance,

which is defined as follows. As in the previous section we

consider a network of Ohmic resistors with conductances Gij

and suppose a unit current enters the node s and exits through

node t . Then the resistance distance Rst is given by the voltage

drop between the nodes s and t . Using the relation Eq. (52),

this yields

Rst = Vs − Vt = Tss − 2Tst + Tt t , (58)

using the symmetry of the matrix T . This relation can be

inverted with the result [29]

Tij = −
1

2
Rij +

1

2N

(
Rtot

j + Rtot
i

)
−

∑
i,j Rij

N2
, (59)

where we have defined Rtot
i =

∑
j Rij .

Substituting Eq. (59) into Eqs. (19) and (31), we can express

all susceptibilities equivalently in terms of the matrix T or the

resistance distances. For the vertex-to-vertex susceptibility we

find

χs→t = −
1

2
Rst +

1

2N
Rtot

s +
1

2N
Rtot

t , (60)

and subsequently the global average of susceptibilities take the

simple form

∑

t �=s

χs→t =
1

2

∑

i,j

Gij −
1

N
Rtot

s . (61)

This relation clearly demonstrates that nodes that are on an

average “close” to the rest of the network (i.e., with high

centrality values), tend to have higher global susceptibility.

In a similar manner, the vertex-to-edge susceptibilities can

be expressed as

ηs→(i,j ) = K̃ij

{
−

1

2
(Rsi − Rsj ) +

1

2N

(
Rtot

i − Rtot
j

)}
, (62)

and the edge-to-vertex susceptibility follows an almost identi-

cal form, apart from the prefactor:

η(i,j )→s = Lij

{
−

1

2

(
Rsi − Rsj

)
+

1

2N

(
Rtot

i − Rtot
j

)}
. (63)

The global edge susceptibilities are given by (derivation in the

Appendix)

χ2
(ij ) =

NL2
st

4





1

N

∑

s

(Rsi−Rsj )2 −

[
1

N

∑

s

(Rsi − Rsj )

]2


.

(64)

C. Scaling with distance

The effect of a linear perturbation generally decays with

distance. To obtain a better understanding of this decay,

we consider a continuum version of the linear response

theory, concentrating on the vertex-to-vertex susceptibility. We

consider a two-dimensional square lattice with equal weights,

as power grids are naturally embedded into a two-dimensional

plane and most grids can be assumed to be approximately

planar. In the continuum limit the Laplacian matrix tends to

the two-dimensional Laplace operator and Eq. (28) becomes a

Poisson equation,

�ξ (x) = pδ(x − x0), (65)

where ξ (x) is the local response at position x (e.g., the local

phase angle), p is the power injection, which occurs at position

x0, and � is the 2D Laplace operator. The solutions to this

equation are well known. On an infinite two-dimensional

domain it is

ξ (x) =
p

2π
ln(|x − x0|) + b, (66)

where b is a constant of integration. Generally, no unique

notion of Euclidean distance between nodes exists for net-

works. The closest analog is the shortest path distance, denoted

by d(s,t) in the following, which is related to the Euclidean

distance, for instance, in regular grids. Figures 2(a) and 2(b)

show the decay behavior in a uniform square grid, compatible

with the continuum results.

Realistic network topologies are more complicated as

shown in Figs. 2(c) and 2(d). We computed the susceptibility

of the Continental European Transmission Network [30] to

perturbing one vertex for two cases of free capacities K̃ . First,

we obtained realistic values K̃ij,real from Ref. [30], then we

considered a uniform model in which all free capacities are

replaced by the average K̃ij,unif = 〈K̃real〉. In the vicinity of

the perturbation, monotonic decay can be seen in both cases.

However, there exist several vertices in the periphery of the

network that are much more susceptible than the rest for

realistic free capacities [dark blue in Fig. 2(c)]. These vertices

are highly susceptible independent of the perturbed vertex.

Analogously to the case of vertex perturbation, the effects

of edge perturbations can also be solved in the continuum limit,

the result being the same as the potential due to an electrical

dipole:

ξ (x) ∝
q · x

|x − x0|2
, (67)
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FIG. 2. The Vertex-to-vertex susceptibility in uniform and realis-

tic network topologies. (a) Color coded plot of χs→t in a 256 × 256

square grid with uniform free capacities, showing logarithmic decay.

The central vertex s was perturbed. (b) Decay behavior of the mean

χs→t in the same topology as in (a) as a function of shortest path

distance d(s,t). The shaded region represents a 95% confidence

interval. We clearly see logarithmic decay. (c) Color coded plot of

χs→t in the Continental European Transmission Network topology

with realistic free capacities (taken from Ref. [30]). The vertex

positions are not realistic. One central vertex was perturbed. There

are several highly susceptible vertices in the network periphery (dark

blue). (d) Decay behavior of the mean χs→t in the same topology as

in (c) as a function of d(s,t). We show both realistic free capacities

K̃ij,real as well as uniform free capacities K̃ij,unif = 〈K̃real〉 set to the

mean realistic value. The same vertex as in (c) was perturbed. In the

realistic case, few highly susceptible vertices in the network periphery

lead to a high variance at large distances, in contrast to the uniform

case.

where q is the unit vector in the direction along which the

perturbed edge lie.

This equation shows that unlike the response to vertex

perturbation, the response to edge perturbation in a network

will be highly directional. The susceptibilities should decay

the fastest in the direction along the edge perturbed, according

to the power law d−2, consistent with the results presented in

Ref. [31], but much slower in the orthogonal direction. In

Figs. 3(a) and 3(c), we see this direction dependence in a

regular square lattice. The lower envelope of the distance-

susceptibility plot decays approximately as d−2 as expected.

We repeat the same analysis on the Continental European

Transmission Network. We see that the susceptibilities are

spread even wider for constant distance, indicating a stronger

dependence on the orientation of the edge. We notice that the

upper envelope in Fig. 3(d) decays very slowly: ≈d−0.4, i.e.,

there exists a small but nonzero number of nodes that are

heavily affected by the perturbation, despite being very far

away from the perturbed edge.

D. Explaining the vulnerability of dead ends

The topology of a supply network determines its lo-

cal [12,32] as well as global stability [9,10,33]. Recently,

Menck et al. have shown that dead ends are particularly prone

to instabilities [34]. They have measured the robustness of

FIG. 3. The edge-to-vertex susceptibility in uniform and realistic

network topologies. (a) Color coded plot of χ(s,t)→j in a 256 × 256

square grid with uniform free capacities. The central edge ((128,128),

(128,129)), where the numbers are integer coordinates, was perturbed.

(b) Decay behavior of χ(st)→j in the same topology as in (a) as a

function of shortest path distance d(s,j ). The decay has a wide spread

due to direction dependence as explained in Ref. (67). (c) Color coded

plot of χ(st)→j in the Continental European Transmission Network

topology with uniform free capacities (taken from Ref. [30]). The

vertex positions are not realistic. One central edge was perturbed. (d)

Decay behavior of χ(st)→j in the same topology as in (c) as a function

of d(s,j ). The same edge as in (c) was perturbed. The susceptibilities

for a single distance are even more widely distributed than in a regular

lattice . The straight lines in (b) and (d) are algebraic fits to the

upper and lower envelopes of the data set to obtain the exponent

of the power-law decay. As the power-law decay breaks down near

the boundary due to finite-size effects, we have to choose a cutoff,

restricting the fit to the shaded region.

a power-grid model to large perturbations at a single node in

terms of the so-called basin stability. To this end, the dynamics

is simulated after a random perturbation to the steady state at a

single node of the network. The basin stability is then defined

as the probability that the network relaxes back to the steady

state. Extensive Monte Carlo studies show that nodes adjacent

to a dead end or dead tree have a particularly small basin

stability.

The particular sensitivity of dead ends is directly related

to the vertex-to-vertex susceptibility introduced in Sec. IV D.

The main mechanism causing desynchronization at a dead

end is shown in Fig. 4. The generation or power injection Ps

at a vertex s adjacent to a dead end is increased for a short

period of time. This perturbation has a strong influence on the

vertex s itself but also at the dead end t , causing a transient

loss of synchrony. For longer times, the vertex s relaxes and

resynchronizes with the rest of the network, whereas the dead

end t does not. In summary, a perturbation at the vertex s has

a large influence on the dynamics of the dead end, while its

influence on the bulk of the network is small.

This property if directly mirrored by the vertex-to-vertex

susceptibility χs→j . Generally, the susceptibility is largest
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FIG. 4. Large susceptibility and desynchronization at dead ends.

(a) The edge susceptibility χs→j is large for j = s and j = t , where

t is the dead end adjacent to the vertex s. (b, c) Dynamics after a

transient increase of the power Ps at the vertex s. The impact of the

perturbation is strongest for the vertices s and t . While s relaxes after

a short transient period, the dead end t loses synchrony permanently.

We consider the topology of the British high-voltage transmission

grid as in Fig. 1, of which only a magnified part is shown. We assume

that the moments of inertia Mj ≡ M and the damping coefficient

Dj ≡ D are the same for all machines. The machines have power

injections of Pj/M = ±1 s−2 and all edges have the transmission

capacity K/M = 4 s−2 and D/M = 0.1 s−1.

locally, i.e., for j = s, while it decreases with the distance

as discussed above. Only if s is adjacent to a dead end t ,

the nonlocal susceptibility χs→t is comparably large. One

particular example is shown in Fig. 4(a). This shows that the

nonlocal impact is strongest at dead ends and thus provides an

explanation for their low basin stability.

VII. LARGE PERTURBATIONS AND STRUCTURAL

DAMAGES

A. From small to large changes

Linear response theory readily predicts how the flow in

a network changes after a small perturbation of the network

topology. But can it be used to estimate the effects of major

changes such as the complete outage of an edge? This is

especially important for electric power grids, where transmis-

sion line failures repeatedly induce large-scale outages (see,

e.g., Refs. [35–41]). Thus, any method that helps to predict

the stability of a grid after the failure of a single edge is

extremely valuable. For an ad-hoc analysis of network stability

in practical applications such methods should be only based

on the topological and load properties of the original network

and avoid time-consuming direct numerical simulations.

We can treat macroscopic changes within a linear response

approach if we slightly modify the derivation of edge suscepti-

bilities introduced in Sec. IV A. As before we keep only terms

linear in ξ but we drop the assumption that the perturbations

κij are small. Then Eq. (15) has to be modified as

N∑

i=1

(Kij + κij ) cos(φi−φj )(ξi − ξj )

= −
N∑

i=1

κij sin(φi − φj ). (68)

This set of linear equations is rewritten in matrix form as

A(st)ξ = κLst q(st), (69)

with the matrix

A(st) = A + κ cos(φs − φt ) q(st)q
T
(st), (70)

where the superscript T denotes the transpose of a vector or

matrix. The change of the local phases is then obtained by

formally solving Eq. (69),

ξ = κLstA
+
(st)q(st). (71)

In particular, we will need the phase differences between two

nodes, which is given as

ξj − ξi = κLst q
T
(ji)A

+
(st)q(st). (72)

This expression suggests that we need to calculate the inverse

separately for each edge (s,t) if we want to assess the impact

of all possible edge failures. However, we can greatly simplify

the problem using the Woodbury matrix identity [42], which

yields

A+
(st) =

(
A + κ cos(φs − φt ) q(st)q

T
(st)

)+

= A+ − A+q(st)

(
κ−1 + qT

(st)A
+q(st)

)+
qT

(st)A
+.

We then obtain

qT
(ji)A

+
(st)q(st) =

qT
(ji)A

+q(st)

1 + κ cos(φs − φt ) qT
(st)A

+q(st)

. (73)

The network flows after the perturbation are now given by

F ′′
ij = Kij sin (ϕj − ϕi + ξj − ξi)

= Fij + Kij cos (ϕj − ϕi)(ξj − ξi)

= Fij + K̃ijκLst q
T
(ji)A

+
(st)q(st)

= Fij +
κLstK̃ij (Tjs − Tj t − Tis + Tit )

1 + κ cos(φs − φt ) (Tss − Tst − Tts + Tt t )
,

for all edges (i,j ) �= (s,t). This expression differs from

Eq. (21) only by the denominator, which tends to one in the

limit of small perturbations κ → 0. For a macroscopic pertur-

bation the denominator is essential to predict the magnitude of

the flow changes correctly. The complete failure of an edge is

described by κ = −Kst , such that we obtain

F ′′
ij = Fij −

K̃ij (Tbs − Tbt − Tas + Tat )

1 − K̃st (Tss − Tst − Tts + Tt t )
× Fst , (74)

for all edges (i,j ) �= (s,t) and F ′′
st = 0 for the failed edge.

Similar formulas are used in power engineering, where the

fraction is referred to as a line outage distribution factor

(LODF) [19,43].

An example of how the damage of a single transmission

line affects the flows in a power grid is shown in Fig. 5.

We plot the change of the flow magnitude |Fij | predicted

by the simple linear response approach, Eq. (21), and the

modified approach, Eq. (74), in comparison to the actual

value obtained from a numerical solution of the steady-state

condition, Eq. (9). For a small damage where only 10% of

the transmission capacity is lost (κst = −0.1 × Kst ) we find a
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modified linear reponse numerically exactsimple linear response

(a) change of flow after damage of a single edge (loss of 10% transmission capacity)

simple linear response
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FIG. 5. Change of flow magnitudes |Fij | after (a) the damage (κ = −0.1 × Kst ) or (b) the complete outage (κ = −Kst ) of a single edge

(dashed). We compare the prediction of simple linear response approach, Eq. (21), and the modified formula, Eq. (74), to the results of a

numerical solution of the steady-state condition, Eq. (9). Note the different color scales used in the figure. We consider the topology British

high-voltage transmission grid as in Fig. 1, of which only a magnified part is shown.

very good agreement between the predicted and actual values

as expected. But even in a complete breakdown, the modified

formula, Eq. (74), provides a very good prediction of the

flow changes after the damage. The simpler linear response

formula, Eq. (21), strongly underestimates the flow changes

as it neglects the denominator 1 − K̃st (Tss − Tst − Tts + Tt t ),

which is significantly smaller than the one in the current

example.
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FIG. 6. Identification of critical edges using linear response theory. We analyze the effects of the breakdown of a single transmission line

for two examples marked by arrows. (a–c) In the upper example, no secondary overloads occur and the grid relaxes back to steady operation

after a short transient period. (d–f) In the lower example, linear response theory predicts a secondary overload (black dashed line in d), and

consequently the dynamics becomes unstable, as shown in panel (f). (a, d) Loads |F ′′
ij/Kij | predicted by the modified linear response formula,

Eq. (74). (b, e) Actual load obtained by solving the steady-state condition, Eq. (9). In (e) no steady state exists after the initial breakdown. (c, f)

Grid dynamic obtained after the breakdown of the respective edge at t = 0. We consider the topology of the British high-voltage transmission

grid as in Fig. 1, of which only a magnified part is shown. We assume that the moments of inertia Mj ≡ M and the damping coefficient

Dj ≡ D are the same for all machines. The machines have power injections of Pj/M = ±1 s−2 and all edges have the transmission capacity

K/M = 4 s−2 and D/M = 0.1 s−1.
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B. Identification of critical edges

The modified formula, Eq. (74), can be used to predict

impeding overloads and large-scale outages in complex supply

networks [44]. Figure 6 shows the effect of the breakdown of a

single transmission line for two examples. In the first example,

Eq. (74) predicts that no overload occurs in agreement with

the direct solution of the steady-state condition, Eq. (9). Thus,

we expect that the grid relaxes to a new steady state after the

failure of the respective edge. This prediction is confirmed

by a direct numerical simulation of the equations of motion,

Eq. (6). In the second example, Eq. (74) predicts that further

overloads occur, i.e., that |F ′′
ij/Kij | > 1 for at least one edge

(i,j ), after the transmission line (s,t) failed. Indeed, numerical

simulations show that no steady state solution of Eq. (9) exists

and that the grid becomes unstable and looses synchrony. In the

following, we call an edge “critical” if its breakdown induces

a desynchronization of the grid. If the grid relaxes back to a

steady operation, i.e., an attractively stable synchronized state

with φ̇j = 0 for all j , we call the edge “stable.”

Based on these results we propose to use the maximum load

max(i,j ) |F ′′
ij/Kij | predicted by the modified linear response

formula, Eq. (74), as a criterion to infer network stability. An

edge (s,t) is predicted to be “critical” or “stable” according to

the following classification system:

max
(i,j )

|F ′′
ij/Kij | > h ⇒ predicted to be critical,

(75)
max
(i,j )

|F ′′
ij/Kij | � h ⇒ predicted to be stable,

where h is a threshold value. Bridges, i.e., edges whose

removal disconnects the grid are always predicted to be critical.

To test this method, we perform direct numerical sim-

ulations of the equations of motion, Eq. (6), for a large

number of test grids, each starting from a stationary state of

normal operation and study the influence of the breakdown

of a single edge. Examples for both scenarios are shown in

Fig. 6. We analyze the coarse-grained structure of the British

high-voltage transmission grid [9,25], which has 165 edges.

We consider 100 random realizations with random generator

positions, thus testing 16 500 edges in total. For each out

of 100 random realizations, we fix the network topology

by randomly selecting half of the nodes to be generators

(Pj = +1 P0) and the others to be consumers (Pj = −P0),

with P0 = 1 s−2. The transmission capacity of all edges is

fixed as Kij = K0 = 4 s−2. One example of such a network

is depicted in Fig. 1. Networks not supporting a steady state

before any edge breakdown were discarded.

To evaluate the performance of the proposed classification

scheme, Eq. (75), we must first define the possible outcomes

of a prediction, where we distinguish between two different

kinds of prediction errors:

True positive: edge is predicted critical and is critical;

False positive: edge is predicted critical but is stable;

False negative: edge is predicted stable but is critical;

True negative: edge is predicted stable and is stable.

Generally, it is impossible to rule out both false-negative

and false-positive predictions such that a compromise must be

achieved. In the current setting, the number of false-positive

predictions can be minimized by choosing a high value of

h, while the number of false-negative predictions can be

minimized by choosing a small value of h.

A quantitative assessment of the performance of a classifiers

is then provided by a receiver operating characteristics (ROC)

curve (Fig. 7) [45]. Here, the true-positive rate of the test, also

called the sensitivity,

SEN

:=
no. of true-positive predictions

no. of true-positive pred. + no. of false-negative pred.
,

is plotted versus the false-positive rate,

FPR

:=
no. of false-positive predictions

no. of false-positive pred. + no. of true-negative pred.
,

for different threshold values h. For a perfect classifier, the

ROC is a point at (FPR,SEN) = (0,1), while for a fully random

classification the ROC curve is a straight line with slope 1

through the origin. Therefore, a classifier is judged to be the

better the nearer the ROC curve approaches the point (0,1),

i.e., the upper left corner of the plot.

Numerical results for 100 realization of the British grid

with random generator positions are shown in Figs. 7(c)

and 7(d). It is observed that the the classifier Eq. (75) closely
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FIG. 7. Performance of different classifiers for the prediction

of critical edges. (a, b) Histograms of characteristic quantities to

identify critical (thin red line) and stable (thick blue line) edges in

complex supply networks: (a) load |Lst | before breakdown and (b)

the maximum load max(i,j ) |F ′′
ij/Kij | predicted by linear response

theory. (c, d) The performance of the classifiers can be judged by a

receiver operating characteristics (ROC) curve, where the sensitivity

is plotted vs. the false-positive rate for different threshold values h.

The predicted max. load (solid green line) closely approaches the

perfect limit (0,1) and clearly outperforms a classifier based on the

load |Lst | (dashed). Results are collected for 100 realizations of

the British grid with random positions of generators and consumers.

One realization is shown in Figs. 5 and 6.
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approaches the perfect limit (FPR,SEN) = (0,1) and clearly

outperforms a classifier based on the load of the edges.

Therefore, linear response theory provides a very promising

approach to identifying critical infrastructures in complex

supply networks.

VIII. CONCLUSION AND OUTLOOK

In summary, we introduced the concepts of vertex suscep-

tibilities and edge susceptibilities as measures of responses

to parametric changes in network dynamical systems. They

qualitatively distinguish—and quantify—the responses due to

changes in the properties of units and their interactions, respec-

tively. Focusing on steady-state responses of oscillator network

characterized by phases or phases and their velocities, we

derived explicit forms of such network susceptibilities. We in

particular analyzed the role of irregular interaction topologies

as those are the least investigated compared to the susceptibili-

ties that are standard in physics. Specifically, we have analyzed

how the responses of a network in some given phase-locked

state depend on the relative location of perturbation and

response sites and how the network topologies enter. We

linked susceptibilities to established measures, for instance,

special cases are known as line outage distribution factors in

power-grid engineering and susceptibilities are closely related

to centrality measures. We explicated an accurate prediction

of network responses not only to small perturbation but also

after the full breakdown of edges. In power grids, this may

be applied, for instance, for an ad hoc security assessment.

Furthermore, network susceptibilities directly reveal weak

points of flow networks and may thus be used in the planning

and design of future grid extensions and establishing other

supply network infrastructures. Finally, the two types of

network susceptibilities are generic measures of responses

to parameter changes and as such may be straightforwardly

generalized across flow, transport, and supply networks as

well as other network dynamical systems where responses are

nonlocal due to genuine collective dynamics.
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APPENDIX: GLOBAL EDGE-TO-VERTEX

SUSCEPTIBILITY IN TERMS OF RESISTANCE DISTANCE

We start with Eq. (59),

Tij = −
1

2
Rij +

1

2N

(
Rtot

j + Rtot
i

)
−

∑
i,j Rij

N2
. (A1)

Applying this on Eq. (23), we obtain

χ2
(st)

L2
st

=
N∑

u=1

(Tus − Tut )
2 =

N∑

u=1

[
−

1

2
(Rus − Rut ) +

1

2N

(
Rtot

us − Rtot
ut

)]2

=
1

4N

[(
Rtot

s − Rtot
t

)]2 +
1

4

∑

u

(Rus − Rut )
2 −

1
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Rtot
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t

) ∑

u

(Rus − Rut )

=
1

4N

[(
Rtot

s − Rtot
t

)]2 +
1

4

∑

u

(Rus − Rut )
2 −

1

2N

[(
Rtot

s − Rtot
t

)]2

= −
1

4N

(
Rtot

s − Rtot
t

)2 +
1

4

∑

u

(Rus − Rut )
2 =

N

4





1

N

∑

u

(Rus − Rut )
2 −

[
1

N

∑

u

Rus−Rut

]2


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