000827124 001__ 827124
000827124 005__ 20210129225750.0
000827124 0247_ $$2Handle$$a2128/13710
000827124 037__ $$aFZJ-2017-01322
000827124 041__ $$aEnglish
000827124 1001_ $$0P:(DE-Juel1)164366$$aLoomba, Varun$$b0$$eCorresponding author$$ufzj
000827124 1112_ $$aEuropean Networks Conference on Algal and Plant Photosynthesis$$cMalta$$d2016-04-26 - 2016-04-29$$gENCAPP$$wMalta
000827124 245__ $$aComputational analysis of hydrodynamics and light distribution in photo-bioreactors for algae biomass production
000827124 260__ $$c2016
000827124 3367_ $$033$$2EndNote$$aConference Paper
000827124 3367_ $$2BibTeX$$aINPROCEEDINGS
000827124 3367_ $$2DRIVER$$aconferenceObject
000827124 3367_ $$2ORCID$$aCONFERENCE_POSTER
000827124 3367_ $$2DataCite$$aOutput Types/Conference Poster
000827124 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1485879418_18215$$xOther
000827124 502__ $$cRWTH Aachen
000827124 520__ $$aMicroalgae can be directly used in health food or as bio-filters for waste water treatment. They also have numerous commercial applications in cosmetics, aquaculture and chemical industry as a source of highly valuable molecules, e.g., polyunsaturated fatty acids [1]. Moreover, they are increasingly recognized as a promising source for biodiesel production [2]. To realize the full potential of microalgae, optimal operating conditions for their cultivation in photo-bioreactors (PBR) need to be identified in order to maximize productivity, lipid content, and efficiency of photosynthesis. The most important parameters affecting PBR performance are reactor shape, light intensity distribution, algae growth and other metabolic properties.The presented study aims at optimizing these parameters using Computational Fluid Dynamics (CFD) simulations with the COMSOL Multiphysics software. Specifically, flat panel photo-bioreactors with turbulent mixing due to air sparging and one-sided lighting are studied. First, flow profiles of both liquid and gas phases are computed using the Euler-Euler approach for analyzing the air sparging and detecting potential dead zones. Then, light intensity distributions are calculated inside different PBR types, based on absorption and light scattering by algae and gas bubbles. Subsequently, the paths of individual algae are traced, and the environmental conditions they are exposed to are recorded over time, in particular aeration and light intensity. Results of the above described simulation stages will be presented and discussed.[1] Spolaore et al.: Commercial applications of microalgae, J. Biosci. Bioeng. 101 (2006): 87-96.[2] Bitog et al.: Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review, Comput. Electron. Agr. 76 (2011): 131-147.
000827124 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000827124 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000827124 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b1$$ufzj
000827124 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b2$$ufzj
000827124 8564_ $$uhttps://juser.fz-juelich.de/record/827124/files/BIoProScale%20Poster_Varun%20Loomba.pdf$$yOpenAccess
000827124 8564_ $$uhttps://juser.fz-juelich.de/record/827124/files/BIoProScale%20Poster_Varun%20Loomba.gif?subformat=icon$$xicon$$yOpenAccess
000827124 8564_ $$uhttps://juser.fz-juelich.de/record/827124/files/BIoProScale%20Poster_Varun%20Loomba.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827124 8564_ $$uhttps://juser.fz-juelich.de/record/827124/files/BIoProScale%20Poster_Varun%20Loomba.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827124 8564_ $$uhttps://juser.fz-juelich.de/record/827124/files/BIoProScale%20Poster_Varun%20Loomba.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827124 8564_ $$uhttps://juser.fz-juelich.de/record/827124/files/BIoProScale%20Poster_Varun%20Loomba.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827124 909CO $$ooai:juser.fz-juelich.de:827124$$pVDB$$pdriver$$popen_access$$popenaire
000827124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164366$$aForschungszentrum Jülich$$b0$$kFZJ
000827124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b1$$kFZJ
000827124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b2$$kFZJ
000827124 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000827124 9141_ $$y2016
000827124 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827124 920__ $$lyes
000827124 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000827124 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x1
000827124 980__ $$aposter
000827124 980__ $$aVDB
000827124 980__ $$aUNRESTRICTED
000827124 980__ $$aI:(DE-Juel1)IBG-2-20101118
000827124 980__ $$aI:(DE-Juel1)IBG-1-20101118
000827124 9801_ $$aFullTexts