000827127 001__ 827127
000827127 005__ 20210129225750.0
000827127 0247_ $$2Handle$$a2128/13708
000827127 037__ $$aFZJ-2017-01325
000827127 041__ $$aEnglish
000827127 1001_ $$0P:(DE-Juel1)164366$$aLoomba, Varun$$b0$$eCorresponding author$$ufzj
000827127 1112_ $$a4th BioProScale Symposium "Bioprocess intensification through Process Analytical Technology (PAT) and Quality by Design (QbD)"$$cBerlin$$d2016-04-06 - 2016-04-08$$gBioProScale 2016$$wGermany
000827127 245__ $$aComputational analysis of hydrodynamics and light distribution in photo-bioreactors for algae biomass production
000827127 260__ $$c2016
000827127 3367_ $$033$$2EndNote$$aConference Paper
000827127 3367_ $$2BibTeX$$aINPROCEEDINGS
000827127 3367_ $$2DRIVER$$aconferenceObject
000827127 3367_ $$2ORCID$$aCONFERENCE_POSTER
000827127 3367_ $$2DataCite$$aOutput Types/Conference Poster
000827127 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1485879274_18209$$xOther
000827127 502__ $$cRWTH Aachen
000827127 520__ $$aMicroalgae can be directly used in health food or as bio-filters for waste water treatment. They also have numerous commercial applications in cosmetics, aquaculture and chemical industry as a source of highly valuable molecules, e.g., polyunsaturated fatty acids [1]. Moreover, they are increasingly recognized as a promising source for biodiesel production [2]. To realize the full potential of microalgae, optimal operating conditions for their cultivation in photo-bioreactors (PBR) need to be identified in order to maximize productivity, lipid content, and efficiency of photosynthesis. The most important parameters affecting PBR performance are reactor shape, light intensity distribution, algae growth and other metabolic properties.The presented study aims at optimizing these parameters using Computational Fluid Dynamics (CFD) simulations with the COMSOL Multiphysics software. Specifically, flat panel photo-bioreactors with turbulent mixing due to air sparging and one-sided lighting are studied. First, flow profiles of both liquid and gas phases are computed using the Euler-Euler approach for analyzing the air sparging and detecting potential dead zones. Then, light intensity distributions are calculated inside different PBR types, based on absorption and light scattering by algae and gas bubbles. Subsequently, the paths of individual algae are traced, and the environmental conditions they are exposed to are recorded over time, in particular aeration and light intensity. Results of the above described simulation stages will be presented and discussed.[1] Spolaore et al.: Commercial applications of microalgae, J. Biosci. Bioeng. 101 (2006): 87-96.[2] Bitog et al.: Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review, Comput. Electron. Agr. 76 (2011): 131-147.
000827127 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000827127 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b1$$ufzj
000827127 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b2$$ufzj
000827127 8564_ $$uhttps://juser.fz-juelich.de/record/827127/files/BIoProScale%20Poster_Varun%20Loomba.pdf$$yOpenAccess
000827127 8564_ $$uhttps://juser.fz-juelich.de/record/827127/files/BIoProScale%20Poster_Varun%20Loomba.gif?subformat=icon$$xicon$$yOpenAccess
000827127 8564_ $$uhttps://juser.fz-juelich.de/record/827127/files/BIoProScale%20Poster_Varun%20Loomba.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827127 8564_ $$uhttps://juser.fz-juelich.de/record/827127/files/BIoProScale%20Poster_Varun%20Loomba.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827127 8564_ $$uhttps://juser.fz-juelich.de/record/827127/files/BIoProScale%20Poster_Varun%20Loomba.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827127 8564_ $$uhttps://juser.fz-juelich.de/record/827127/files/BIoProScale%20Poster_Varun%20Loomba.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827127 909CO $$ooai:juser.fz-juelich.de:827127$$pVDB$$pdriver$$popen_access$$popenaire
000827127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164366$$aForschungszentrum Jülich$$b0$$kFZJ
000827127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b1$$kFZJ
000827127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b2$$kFZJ
000827127 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000827127 9141_ $$y2016
000827127 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827127 920__ $$lyes
000827127 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000827127 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x1
000827127 980__ $$aposter
000827127 980__ $$aVDB
000827127 980__ $$aUNRESTRICTED
000827127 980__ $$aI:(DE-Juel1)IBG-2-20101118
000827127 980__ $$aI:(DE-Juel1)IBG-1-20101118
000827127 9801_ $$aFullTexts