000827134 001__ 827134
000827134 005__ 20210129225751.0
000827134 0247_ $$2Handle$$a2128/13698
000827134 037__ $$aFZJ-2017-01332
000827134 041__ $$aGerman
000827134 1001_ $$0P:(DE-Juel1)164366$$aLoomba, Varun$$b0$$eCorresponding author
000827134 1112_ $$a9. Bundesalgenstammtisch 2016$$cJülich$$d2016-09-26 - 2016-09-27$$wGermany
000827134 245__ $$aComputational analysis of hydrodynamics and light distribution in photo-bioreactors for algae biomass production
000827134 260__ $$c2016
000827134 3367_ $$033$$2EndNote$$aConference Paper
000827134 3367_ $$2BibTeX$$aINPROCEEDINGS
000827134 3367_ $$2DRIVER$$aconferenceObject
000827134 3367_ $$2ORCID$$aCONFERENCE_POSTER
000827134 3367_ $$2DataCite$$aOutput Types/Conference Poster
000827134 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1485874824_18216$$xOther
000827134 502__ $$cRWTH Aachen
000827134 520__ $$aMicroalgae can be directly used in health food or as bio-filters for waste water treatment. They also have numerous commercial applications in cosmetics, aquaculture and chemical industry as a source of highly valuable molecules, e.g., polyunsaturated fatty acids [1]. Moreover, they are increasingly recognized as a promising source for biodiesel production [2]. To realize the full potential of microalgae, optimal operating conditions for their cultivation in photo-bioreactors (PBR) need to be identified in order to maximize productivity, lipid content, and efficiency of photosynthesis. The most important parameters affecting PBR performance are reactor shape, light intensity distribution, algae growth and other metabolic properties.The presented study aims at analyzing sensitivities to these parameters using Computational Fluid Dynamics (CFD) simulations with the COMSOL Multiphysics software. Specifically, flat panel photo-bioreactors with turbulent mixing due to air sparging and one-sided lighting are studied. First, flow profiles of both liquid and gas phases are computed using the Euler-Euler approach for analyzing the air sparging and detecting potential dead zones. Then, light intensity distributions are calculated, based on absorption and light scattering by algae and gas bubbles. Subsequently, the paths of individual algae are traced, and the environmental conditions they are exposed to are recorded over time, in particular aeration and light intensity. Statistical analysis of the particle traces is performed combining the light exposure with an empirical growth model for algae. Results of the above described simulation stages will be presented and discussed.[1] Spolaore et al.: Commercial applications of microalgae, J. Biosci. Bioeng. 101 (2006): 87-96.[2] Bitog et al.: Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review, Comput. Electron. Agr. 76 (2011): 131-147.
000827134 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000827134 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b1
000827134 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b2
000827134 8564_ $$uhttps://juser.fz-juelich.de/record/827134/files/Bundesalgenstammtisch%20Poster_Varun%20Loomba-1.pdf$$yOpenAccess
000827134 8564_ $$uhttps://juser.fz-juelich.de/record/827134/files/Bundesalgenstammtisch%20Poster_Varun%20Loomba-1.gif?subformat=icon$$xicon$$yOpenAccess
000827134 8564_ $$uhttps://juser.fz-juelich.de/record/827134/files/Bundesalgenstammtisch%20Poster_Varun%20Loomba-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827134 8564_ $$uhttps://juser.fz-juelich.de/record/827134/files/Bundesalgenstammtisch%20Poster_Varun%20Loomba-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827134 8564_ $$uhttps://juser.fz-juelich.de/record/827134/files/Bundesalgenstammtisch%20Poster_Varun%20Loomba-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827134 8564_ $$uhttps://juser.fz-juelich.de/record/827134/files/Bundesalgenstammtisch%20Poster_Varun%20Loomba-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827134 909CO $$ooai:juser.fz-juelich.de:827134$$pVDB$$pdriver$$popen_access$$popenaire
000827134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164366$$aForschungszentrum Jülich$$b0$$kFZJ
000827134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b1$$kFZJ
000827134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b2$$kFZJ
000827134 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000827134 9141_ $$y2016
000827134 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827134 920__ $$lyes
000827134 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000827134 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x1
000827134 980__ $$aposter
000827134 980__ $$aVDB
000827134 980__ $$aUNRESTRICTED
000827134 980__ $$aI:(DE-Juel1)IBG-2-20101118
000827134 980__ $$aI:(DE-Juel1)IBG-1-20101118
000827134 9801_ $$aFullTexts