000827138 001__ 827138
000827138 005__ 20220930130115.0
000827138 0247_ $$2doi$$a10.3390/rs9020103
000827138 0247_ $$2Handle$$a2128/13751
000827138 0247_ $$2WOS$$aWOS:000397013700005
000827138 0247_ $$2altmetric$$aaltmetric:15821831
000827138 037__ $$aFZJ-2017-01336
000827138 082__ $$a620
000827138 1001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b0$$eCorresponding author
000827138 245__ $$aValidation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron Probes
000827138 260__ $$aBasel$$bMDPI$$c2017
000827138 3367_ $$2DRIVER$$aarticle
000827138 3367_ $$2DataCite$$aOutput Types/Journal article
000827138 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1486374417_6847
000827138 3367_ $$2BibTeX$$aARTICLE
000827138 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827138 3367_ $$00$$2EndNote$$aJournal Article
000827138 520__ $$aThe scale difference between point in situ soil moisture measurements and low resolution satellite products limits the quality of any validation efforts in heterogeneous regions. Cosmic Ray Neutron Probes (CRNP) could be an option to fill the scale gap between both systems, as they provide area-average soil moisture within a 150–250 m radius footprint. In this study, we evaluate differences and similarities between CRNP observations, and surface soil moisture products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), the METOP-A/B Advanced Scatterometer (ASCAT), the Soil Moisture Active and Passive (SMAP), the Soil Moisture and Ocean Salinity (SMOS), as well as simulations from the Global Land Data Assimilation System Version 2 (GLDAS2). Six CRNPs located on five continents have been selected as test sites: the Rur catchment in Germany, the COSMOS sites in Arizona and California (USA), and Kenya, one CosmOz site in New South Wales (Australia), and a site in Karnataka (India). Standard validation scores as well as the Triple Collocation (TC) method identified SMAP to provide a high accuracy soil moisture product with low noise or uncertainties as compared to CRNPs. The potential of CRNPs for satellite soil moisture validation has been proven; however, biomass correction methods should be implemented to improve its application in regions with large vegetation dynamics
000827138 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000827138 588__ $$aDataset connected to CrossRef
000827138 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b1
000827138 7001_ $$0P:(DE-HGF)0$$aZreda, Marek$$b2
000827138 7001_ $$0P:(DE-HGF)0$$aMonerris, Alessandra$$b3
000827138 7001_ $$0P:(DE-HGF)0$$aMorrison, Ross$$b4
000827138 7001_ $$0P:(DE-HGF)0$$aMuddu, Sekhar$$b5
000827138 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6
000827138 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs9020103$$gVol. 9, no. 2, p. 103 -$$n2$$p103 -$$tRemote sensing$$v9$$x2072-4292$$y2017
000827138 8564_ $$uhttps://juser.fz-juelich.de/record/827138/files/remotesensing-09-00103.pdf$$yOpenAccess
000827138 8564_ $$uhttps://juser.fz-juelich.de/record/827138/files/remotesensing-09-00103.gif?subformat=icon$$xicon$$yOpenAccess
000827138 8564_ $$uhttps://juser.fz-juelich.de/record/827138/files/remotesensing-09-00103.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827138 8564_ $$uhttps://juser.fz-juelich.de/record/827138/files/remotesensing-09-00103.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827138 8564_ $$uhttps://juser.fz-juelich.de/record/827138/files/remotesensing-09-00103.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827138 8564_ $$uhttps://juser.fz-juelich.de/record/827138/files/remotesensing-09-00103.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827138 8767_ $$8remotesensing-163761$$92017-01-19$$d2017-01-19$$eAPC$$jZahlung erfolgt$$zCHF 1.360,-,
000827138 909CO $$ooai:juser.fz-juelich.de:827138$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000827138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b0$$kFZJ
000827138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b1$$kFZJ
000827138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000827138 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000827138 9141_ $$y2017
000827138 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827138 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000827138 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000827138 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS-BASEL : 2015
000827138 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000827138 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000827138 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827138 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827138 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000827138 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827138 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000827138 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000827138 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827138 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827138 920__ $$lyes
000827138 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000827138 9801_ $$aFullTexts
000827138 980__ $$ajournal
000827138 980__ $$aVDB
000827138 980__ $$aUNRESTRICTED
000827138 980__ $$aI:(DE-Juel1)IBG-3-20101118
000827138 980__ $$aAPC