Home > Publications database > Validation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron Probes > print |
001 | 827138 | ||
005 | 20220930130115.0 | ||
024 | 7 | _ | |a 10.3390/rs9020103 |2 doi |
024 | 7 | _ | |a 2128/13751 |2 Handle |
024 | 7 | _ | |a WOS:000397013700005 |2 WOS |
024 | 7 | _ | |a altmetric:15821831 |2 altmetric |
037 | _ | _ | |a FZJ-2017-01336 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Montzka, Carsten |0 P:(DE-Juel1)129506 |b 0 |e Corresponding author |
245 | _ | _ | |a Validation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron Probes |
260 | _ | _ | |a Basel |c 2017 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1486374417_6847 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The scale difference between point in situ soil moisture measurements and low resolution satellite products limits the quality of any validation efforts in heterogeneous regions. Cosmic Ray Neutron Probes (CRNP) could be an option to fill the scale gap between both systems, as they provide area-average soil moisture within a 150–250 m radius footprint. In this study, we evaluate differences and similarities between CRNP observations, and surface soil moisture products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), the METOP-A/B Advanced Scatterometer (ASCAT), the Soil Moisture Active and Passive (SMAP), the Soil Moisture and Ocean Salinity (SMOS), as well as simulations from the Global Land Data Assimilation System Version 2 (GLDAS2). Six CRNPs located on five continents have been selected as test sites: the Rur catchment in Germany, the COSMOS sites in Arizona and California (USA), and Kenya, one CosmOz site in New South Wales (Australia), and a site in Karnataka (India). Standard validation scores as well as the Triple Collocation (TC) method identified SMAP to provide a high accuracy soil moisture product with low noise or uncertainties as compared to CRNPs. The potential of CRNPs for satellite soil moisture validation has been proven; however, biomass correction methods should be implemented to improve its application in regions with large vegetation dynamics |
536 | _ | _ | |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) |0 G:(DE-HGF)POF3-255 |c POF3-255 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Bogena, Heye |0 P:(DE-Juel1)129440 |b 1 |
700 | 1 | _ | |a Zreda, Marek |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Monerris, Alessandra |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Morrison, Ross |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Muddu, Sekhar |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Vereecken, Harry |0 P:(DE-Juel1)129549 |b 6 |
773 | _ | _ | |a 10.3390/rs9020103 |g Vol. 9, no. 2, p. 103 - |0 PERI:(DE-600)2513863-7 |n 2 |p 103 - |t Remote sensing |v 9 |y 2017 |x 2072-4292 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/827138/files/remotesensing-09-00103.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/827138/files/remotesensing-09-00103.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/827138/files/remotesensing-09-00103.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/827138/files/remotesensing-09-00103.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/827138/files/remotesensing-09-00103.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/827138/files/remotesensing-09-00103.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:827138 |p openaire |p open_access |p OpenAPC |p driver |p VDB:Earth_Environment |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)129506 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129440 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)129549 |
913 | 1 | _ | |a DE-HGF |l Terrestrische Umwelt |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-255 |2 G:(DE-HGF)POF3-200 |v Terrestrial Systems: From Observation to Prediction |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b REMOTE SENS-BASEL : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|