000827147 001__ 827147
000827147 005__ 20240610120531.0
000827147 0247_ $$2doi$$a10.1016/j.ultramic.2015.09.004
000827147 0247_ $$2WOS$$aWOS:000367357500012
000827147 037__ $$aFZJ-2017-01345
000827147 041__ $$aEnglish
000827147 082__ $$a570
000827147 1001_ $$0P:(DE-Juel1)159103$$aChang, Stefan$$b0$$eCorresponding author
000827147 245__ $$aPerformance of a direct detection camera for off-axis electron holography
000827147 260__ $$aAmsterdam$$bElsevier Science$$c2016
000827147 3367_ $$2DRIVER$$aarticle
000827147 3367_ $$2DataCite$$aOutput Types/Journal article
000827147 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1485865806_18215
000827147 3367_ $$2BibTeX$$aARTICLE
000827147 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827147 3367_ $$00$$2EndNote$$aJournal Article
000827147 520__ $$aThe performance of a direct detection camera (DDC) is evaluated in the context of off-axis electron holographic experiments in a transmission electron microscope. Its performance is also compared directly with that of a conventional charge-coupled device (CCD) camera. The DDC evaluated here can be operated either by the detection of individual electron events (counting mode) or by the effective integration of many such events during a given exposure time (linear mode). It is demonstrated that the improved modulation transfer functions and detective quantum efficiencies of both modes of the DDC give rise to significant benefits over the conventional CCD cameras, specifically, a significant improvement in the visibility of the holographic fringes and a reduction of the statistical error in the phase of the reconstructed electron wave function. The DDC's linear mode, which can handle higher dose rates, allows optimisation of the dose rate to achieve the best phase resolution for a wide variety of experimental conditions. For suitable conditions, the counting mode can potentially utilise a significantly lower dose to achieve a phase resolution that is comparable to that achieved using the linear mode. The use of multiple holograms and correlation techniques to increase the total dose in counting mode is also demonstrated.
000827147 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000827147 7001_ $$0P:(DE-Juel1)159157$$aDwyer, Christian$$b1
000827147 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b2
000827147 7001_ $$0P:(DE-Juel1)144965$$aBoothroyd, Christopher Brian$$b3
000827147 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b4
000827147 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2015.09.004$$p90 - 97$$tUltramicroscopy$$v161$$x0304-3991$$y2016
000827147 8564_ $$uhttps://juser.fz-juelich.de/record/827147/files/1-s2.0-S0304399115300279-main.pdf$$yRestricted
000827147 8564_ $$uhttps://juser.fz-juelich.de/record/827147/files/1-s2.0-S0304399115300279-main.gif?subformat=icon$$xicon$$yRestricted
000827147 8564_ $$uhttps://juser.fz-juelich.de/record/827147/files/1-s2.0-S0304399115300279-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000827147 8564_ $$uhttps://juser.fz-juelich.de/record/827147/files/1-s2.0-S0304399115300279-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000827147 8564_ $$uhttps://juser.fz-juelich.de/record/827147/files/1-s2.0-S0304399115300279-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000827147 8564_ $$uhttps://juser.fz-juelich.de/record/827147/files/1-s2.0-S0304399115300279-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000827147 909CO $$ooai:juser.fz-juelich.de:827147$$pVDB
000827147 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827147 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000827147 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000827147 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000827147 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2015
000827147 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827147 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000827147 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827147 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000827147 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000827147 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000827147 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000827147 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000827147 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827147 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000827147 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827147 9141_ $$y2016
000827147 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b2$$kFZJ
000827147 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
000827147 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000827147 920__ $$lyes
000827147 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000827147 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000827147 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2
000827147 980__ $$ajournal
000827147 980__ $$aVDB
000827147 980__ $$aUNRESTRICTED
000827147 980__ $$aI:(DE-Juel1)PGI-5-20110106
000827147 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000827147 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000827147 981__ $$aI:(DE-Juel1)ER-C-1-20170209