001     827147
005     20240610120531.0
024 7 _ |2 doi
|a 10.1016/j.ultramic.2015.09.004
024 7 _ |a WOS:000367357500012
|2 WOS
037 _ _ |a FZJ-2017-01345
041 _ _ |a English
082 _ _ |a 570
100 1 _ |0 P:(DE-Juel1)159103
|a Chang, Stefan
|b 0
|e Corresponding author
245 _ _ |a Performance of a direct detection camera for off-axis electron holography
260 _ _ |a Amsterdam
|b Elsevier Science
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1485865806_18215
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The performance of a direct detection camera (DDC) is evaluated in the context of off-axis electron holographic experiments in a transmission electron microscope. Its performance is also compared directly with that of a conventional charge-coupled device (CCD) camera. The DDC evaluated here can be operated either by the detection of individual electron events (counting mode) or by the effective integration of many such events during a given exposure time (linear mode). It is demonstrated that the improved modulation transfer functions and detective quantum efficiencies of both modes of the DDC give rise to significant benefits over the conventional CCD cameras, specifically, a significant improvement in the visibility of the holographic fringes and a reduction of the statistical error in the phase of the reconstructed electron wave function. The DDC's linear mode, which can handle higher dose rates, allows optimisation of the dose rate to achieve the best phase resolution for a wide variety of experimental conditions. For suitable conditions, the counting mode can potentially utilise a significantly lower dose to achieve a phase resolution that is comparable to that achieved using the linear mode. The use of multiple holograms and correlation techniques to increase the total dose in counting mode is also demonstrated.
536 _ _ |0 G:(DE-HGF)POF3-143
|a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|c POF3-143
|f POF III
|x 0
700 1 _ |0 P:(DE-Juel1)159157
|a Dwyer, Christian
|b 1
700 1 _ |0 P:(DE-Juel1)130525
|a Barthel, Juri
|b 2
700 1 _ |0 P:(DE-Juel1)144965
|a Boothroyd, Christopher Brian
|b 3
700 1 _ |0 P:(DE-Juel1)144121
|a Dunin-Borkowski, Rafal
|b 4
773 _ _ |0 PERI:(DE-600)1479043-9
|a 10.1016/j.ultramic.2015.09.004
|p 90 - 97
|t Ultramicroscopy
|v 161
|x 0304-3991
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/827147/files/1-s2.0-S0304399115300279-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827147/files/1-s2.0-S0304399115300279-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827147/files/1-s2.0-S0304399115300279-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827147/files/1-s2.0-S0304399115300279-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827147/files/1-s2.0-S0304399115300279-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827147/files/1-s2.0-S0304399115300279-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:827147
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130525
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144121
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0550
|2 StatID
|a No Authors Fulltext
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ULTRAMICROSCOPY : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21