001     827175
005     20240610120540.0
024 7 _ |2 doi
|a 10.1002/9783527808465.EMC2016.6263
037 _ _ |a FZJ-2017-01373
041 _ _ |a English
100 1 _ |0 P:(DE-HGF)0
|a Li, Zi-An
|b 0
111 2 _ |a 16th European Microscopy Congress (EMC 2016)
|c Lyon
|d 2016-08-28 - 2016-09-02
|w France
245 _ _ |a Magnetic Skyrmions in an FeGe Nanostripe Revealed by in situ Electron Holography
260 _ _ |a Weinheim, Germany
|b Wiley-VCH Verlag GmbH & Co. KGaA
|c 2016
295 1 0 |a European Microscopy Congress 2016: Proceedings / Li, Zi-An ISBN: 9783527808465
300 _ _ |a 974 - 975
336 7 _ |2 ORCID
|a CONFERENCE_PAPER
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |2 BibTeX
|a INPROCEEDINGS
336 7 _ |2 DRIVER
|a conferenceObject
336 7 _ |2 DataCite
|a Output Types/Conference Paper
336 7 _ |0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|a Contribution to a conference proceedings
|b contrib
|m contrib
|s 1485872283_18215
336 7 _ |0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|a Contribution to a book
|m contb
520 _ _ |a ntense research interest in magnetic skyrmions is presently driving the development of new fundamental concepts and applications1. Magnetic skyrmions are particle-like, topologically protected swirling spin textures, in which the peripheral spins are oriented vertically, the central spins are oriented in the opposite direction and the intermediate spins rotate smoothly between these two opposite orientations, as shown in the inset to Fig. 1(a). In a range of applied magnetic fields, skyrmion lattices form in certain chiral magnets, such as B20-type magnets, in which a lack of inversion symmetry and spin-orbit coupling gives rise to the Dzyaloshinskii-Moriya interaction. The typical sizes of skyrmions are between 3 and 100 nm. For technically relevant applications, a full understanding of skyrmion formation, stability, manipulation and annihilation is required. Recent experiments have demonstrated the formation of magnetic skyrmion chains in geometrically confined nanostructures2, as shown schematically in Fig. 1(b). A critical step towards real-world device applications involves the development of an approach that can be used to controllably create, manipulate and annihilate skyrmions in magnetic nanostructures, including wire-like geometries.Real-space imaging of complex skyrmion spin configurations using Lorentz microscopy (LM) in the transmission electron microscope (TEM) has enabled the direct observation of skyrmion lattice formation and transformations between different magnetic states with nanometre spatial resolution3. However, the finite size and the inherently weak magnetization of such magnetic nanostructures imposes great experimental challenges for LM. In particular, Fresnel fringe contrast at the specimen edge makes extremely difficult to use LM to obtain magnetic signals in samples that have lateral dimensions of below 10 nm. In contrast, off-axis electron holography (EH) in the TEM, which allows electron-optical phase images to be recorded directly with nanometre spatial resolution and high phase sensitivity, provides easier access to magnetic states in nanostructures. Digital acquisition and analysis of electron holograms and sophisticated image analysis software are then essential in studies of weak and slowly varying phase objects such as magnetic skyrmions4.Here, we use both LM and EH to study magnetic skyrmions in a B20-type FeGe nanostripe. The use of liquid nitrogen specimen holder (Gatan model 636) allows the specimen temperature to be varied between 95 and 370 K, and the objective lens of the microscope (FEI Titan 60-300) can be used to apply magnetic fields to the specimen of 0 to 1.5 T. The aim of our study is to resolve the fine magnetic structures of geometrically confined skyrmions and to understand their formation process. Figures 2(a-b) show Lorentz images of a typical FeGe nanostripe, in which a helix to skyrmion transition occurs in response to an applied magnetic field. Figure 2(c) shows a colour-contour composite map derived from a phase image recorded using EH. The slight asymmetry of the contours results from the wedge-shaped specimen thickness profile. Artefacts associated with local changes in specimen thickness in such images can be removed from such images by separating the mean inner potential contribution from the magnetic contribution to the phase, for examples by evaluating the difference between phase images recorded at two different specimen temperatures.
536 _ _ |0 G:(DE-HGF)POF3-143
|a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book
700 1 _ |0 P:(DE-Juel1)144926
|a Kovács, András
|b 1
700 1 _ |0 P:(DE-Juel1)157886
|a Tavabi, Amir Hossein
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Jin, Chiming
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Du, Haifeng
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Tian, Mingliang
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Farle, Michael
|b 6
700 1 _ |0 P:(DE-Juel1)144121
|a Dunin-Borkowski, Rafal
|b 7
773 _ _ |a 10.1002/9783527808465.EMC2016.6263
856 4 _ |u https://juser.fz-juelich.de/record/827175/files/emc20166263-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827175/files/emc20166263-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827175/files/emc20166263-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827175/files/emc20166263-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827175/files/emc20166263-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827175/files/emc20166263-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:827175
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144926
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)157886
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 4
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144121
|a Forschungszentrum Jülich
|b 7
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21