000827177 001__ 827177
000827177 005__ 20240610120540.0
000827177 0247_ $$2doi$$a10.1002/9783527808465.EMC2016.6949
000827177 037__ $$aFZJ-2017-01375
000827177 041__ $$aEnglish
000827177 1001_ $$0P:(DE-HGF)0$$aTileli, Vasiliki$$b0
000827177 1112_ $$a16th European Microscopy Congress (EMC 2016)$$cLyon$$d2016-08-28 - 2016-09-02$$wFrance
000827177 245__ $$a2016Decoupling of valence and coordination number contributions at perovskite surfaces
000827177 260__ $$aWeinheim, Germany$$bWiley-VCH Verlag GmbH & Co. KGaA$$c2016
000827177 29510 $$aEuropean Microscopy Congress 2016: Proceedings
000827177 300__ $$a934- 935
000827177 3367_ $$2ORCID$$aCONFERENCE_PAPER
000827177 3367_ $$033$$2EndNote$$aConference Paper
000827177 3367_ $$2BibTeX$$aINPROCEEDINGS
000827177 3367_ $$2DRIVER$$aconferenceObject
000827177 3367_ $$2DataCite$$aOutput Types/Conference Paper
000827177 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1485872518_18213
000827177 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000827177 520__ $$aPerovskite oxide nanostructures are on the forefront of technology due to the wide spectrum of possible applications pertinent to renewable energy sources, such as water-splitting, solar cells, fuel cells, batteries, and catalysis. In particular, the exceptional properties for the oxygen reduction reaction in catalysis have been detailed recently in a volcano plot and the results reveal that orthorhombic, Jahn-Teller distorted LaMnO3 perovskite nanoparticles are the leading, non-noble metal candidate for enhanced catalytic activity on the cathode electrode of fuel cells [1]. Since the functional properties of these nanoparticles lie on their active surfaces, our approach involves a detailed structural and chemical evaluation of the surfaces on the atomic scale to determine what/where the reaction centres are. Subsequently, the morphology of the particles can be optimised to maximise the number of these reaction centres, allowing us to attain the highest possible performance of perovskite catalysts.From structural transmission electron microscopy (TEM) data it was determined that polar facets exist on crystallites, which lead to assumptions on possible surface reconstruction/relaxation. However, high resolution TEM indicated that the atomic terminations of several surfaces remained defect-free up to the very surface with no visible reconstruction taking place [2], as shown in Figure 1. Next, the surface and subsurface of the working perovskite catalyst was probed by high spatial and temporal resolution electron energy-loss spectroscopy (EELS) in scanning TEM mode. The results revealed that the surface shows different character than the bulk. Tan et al. has previously shown that different oxidation states of Mn can be probed at neighbouring sites in the same compound [3] but it was also theoretically predicted that such a change can be attributed to coordination number differences as well [4]. Indeed, the extracted experimental information by EELS for the pristine LaMnO3 powder was analysed utilising density functional theory calculations under the optic matrix elements approximation, as shown for the Mn L3 peak in Figure 2, and the shift to lower energies of the Mn L3,2 edge was found to be a convolution of both changes in oxidation state and in the number of nearest neighbours (coordination).
000827177 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000827177 588__ $$aDataset connected to CrossRef Book
000827177 7001_ $$0P:(DE-HGF)0$$aAhmad, Ehsan$$b1
000827177 7001_ $$0P:(DE-HGF)0$$aWebster, Ross$$b2
000827177 7001_ $$0P:(DE-HGF)0$$aMallia, Giuseppe$$b3
000827177 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b4
000827177 7001_ $$0P:(DE-HGF)0$$aStoerzinger, Kelsey$$b5
000827177 7001_ $$0P:(DE-HGF)0$$aShao-Horn, Yang$$b6
000827177 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b7
000827177 7001_ $$0P:(DE-HGF)0$$aHarrison, Nicholas$$b8
000827177 773__ $$a10.1002/9783527808465.EMC2016.6949
000827177 8564_ $$uhttps://juser.fz-juelich.de/record/827177/files/emc20166949.pdf$$yRestricted
000827177 8564_ $$uhttps://juser.fz-juelich.de/record/827177/files/emc20166949.gif?subformat=icon$$xicon$$yRestricted
000827177 8564_ $$uhttps://juser.fz-juelich.de/record/827177/files/emc20166949.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000827177 8564_ $$uhttps://juser.fz-juelich.de/record/827177/files/emc20166949.jpg?subformat=icon-180$$xicon-180$$yRestricted
000827177 8564_ $$uhttps://juser.fz-juelich.de/record/827177/files/emc20166949.jpg?subformat=icon-640$$xicon-640$$yRestricted
000827177 8564_ $$uhttps://juser.fz-juelich.de/record/827177/files/emc20166949.pdf?subformat=pdfa$$xpdfa$$yRestricted
000827177 909CO $$ooai:juser.fz-juelich.de:827177$$pVDB
000827177 9141_ $$y2016
000827177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
000827177 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000827177 920__ $$lyes
000827177 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000827177 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000827177 980__ $$acontrib
000827177 980__ $$aVDB
000827177 980__ $$acontb
000827177 980__ $$aI:(DE-Juel1)PGI-5-20110106
000827177 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000827177 980__ $$aUNRESTRICTED
000827177 981__ $$aI:(DE-Juel1)ER-C-1-20170209