000827180 001__ 827180
000827180 005__ 20240610120541.0
000827180 0247_ $$2doi$$a10.1002/9783527808465.EMC2016.6030
000827180 037__ $$aFZJ-2017-01378
000827180 041__ $$aEnglish
000827180 1001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b0$$eCorresponding author
000827180 1112_ $$a16th European Microscopy Congress (EMC 2016)$$cLyon$$d2016-08-28 - 2016-09-02$$wFrance
000827180 245__ $$aGrowth and degradation of advanced octahedral Pt-alloy nanoparticle catalysts for fuel cells
000827180 260__ $$aWeinheim, Germany$$bWiley-VCH Verlag GmbH & Co. KGaA$$c2016
000827180 29510 $$aEuropean Microscopy Congress 2016: Proceedings
000827180 300__ $$a800 - 801
000827180 3367_ $$2ORCID$$aCONFERENCE_PAPER
000827180 3367_ $$033$$2EndNote$$aConference Paper
000827180 3367_ $$2BibTeX$$aINPROCEEDINGS
000827180 3367_ $$2DRIVER$$aconferenceObject
000827180 3367_ $$2DataCite$$aOutput Types/Conference Paper
000827180 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1485873001_18208
000827180 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000827180 520__ $$aOctahedral Pt-Ni nanoparticles are highly attractive as fuel-cell catalysts due to their extraordinarily high activity for the oxygen-reduction-reaction (ORR). A deep understanding of their atomic-scale structure, degradation and formation is a prerequisite for their use as rationally designed nanoparticle catalysts with high activity and long-term stability.Here we present an extensive microstructural study of the growth and degradation behavior of various octahedral Pt-alloy nanoparticles using in situ transmission electron microscopy (TEM) and Cs-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with electron energy-loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy (EDX). We show that octahedral nanoparticles often show compositional anisotropy with Ni-rich {111} facets leading to complex structural degradation during ORR electrocatalysis. The Ni-rich {111} facets are preferentially etched, resulting in the formation of first concave octahedra and then Pt-rich skeletons that have less active facets (Figure 1)[1]. Furthermore, we reveal element-specific anisotropic growth as the reason for the compositional anisotropy and the limited stability. During the solvothermal synthesis, a Pt-rich nucleus evolves into precursor nanohexapods, followed by the slower step-induced deposition of Ni on the concave hexapod surface, to form octahedral facets (Figure 2)[2]. While the growth of Pt-rich hexapod is a ligand-controlled kinetic process, the step-induced deposition of the Ni-rich phase at the concave surface resembles a thermodynamically controlled process accomplished in much longer time. In order to tune the atomic-scale microstructure of the octahedra for long-term stability, we illustrate the effect of varying the growth conditions on morphology and compositional segregation by producing trimetallic PtNiCo nanooctahedra and comparing “one-step” and newly-developed “two-step” synthesis routes [3]. Furthermore we demonstrate how Pt atom surface diffusion may produce a protective Pt surface layer on top of the Ni-rich facets, resulting in advanced and more stable octahedral catalysts. Figure 3 shows a sequence of structural changes taking place on an octahedral nanoparticle during in situ heating up to 800°C using a MEMS chip heating holder (DENSsolutions, Delft, NL). It can be observed that Pt-rich corner atoms diffuse and subsequently fill the concave Ni-rich {111} facets, forming perfectly octahedral nanoparticles with flat Pt-rich {111} surfaces (Figure 3) [4].
000827180 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000827180 588__ $$aDataset connected to CrossRef Book
000827180 7001_ $$0P:(DE-Juel1)166087$$aGocyla, Martin$$b1
000827180 7001_ $$0P:(DE-HGF)0$$aGan, Lin$$b2
000827180 7001_ $$0P:(DE-HGF)0$$aStrasser, Peter$$b3
000827180 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b4
000827180 773__ $$a10.1002/9783527808465.EMC2016.6030
000827180 8564_ $$uhttps://juser.fz-juelich.de/record/827180/files/emc20166030.pdf$$yRestricted
000827180 8564_ $$uhttps://juser.fz-juelich.de/record/827180/files/emc20166030.gif?subformat=icon$$xicon$$yRestricted
000827180 8564_ $$uhttps://juser.fz-juelich.de/record/827180/files/emc20166030.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000827180 8564_ $$uhttps://juser.fz-juelich.de/record/827180/files/emc20166030.jpg?subformat=icon-180$$xicon-180$$yRestricted
000827180 8564_ $$uhttps://juser.fz-juelich.de/record/827180/files/emc20166030.jpg?subformat=icon-640$$xicon-640$$yRestricted
000827180 8564_ $$uhttps://juser.fz-juelich.de/record/827180/files/emc20166030.pdf?subformat=pdfa$$xpdfa$$yRestricted
000827180 909CO $$ooai:juser.fz-juelich.de:827180$$pVDB
000827180 9141_ $$y2016
000827180 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166087$$aForschungszentrum Jülich$$b1$$kFZJ
000827180 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166087$$aForschungszentrum Jülich$$b1$$kFZJ
000827180 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
000827180 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000827180 920__ $$lyes
000827180 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000827180 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000827180 980__ $$acontrib
000827180 980__ $$aVDB
000827180 980__ $$acontb
000827180 980__ $$aI:(DE-Juel1)PGI-5-20110106
000827180 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000827180 980__ $$aUNRESTRICTED
000827180 981__ $$aI:(DE-Juel1)ER-C-1-20170209