001     827180
005     20240610120541.0
024 7 _ |2 doi
|a 10.1002/9783527808465.EMC2016.6030
037 _ _ |a FZJ-2017-01378
041 _ _ |a English
100 1 _ |0 P:(DE-Juel1)130695
|a Heggen, Marc
|b 0
|e Corresponding author
111 2 _ |a 16th European Microscopy Congress (EMC 2016)
|c Lyon
|d 2016-08-28 - 2016-09-02
|w France
245 _ _ |a Growth and degradation of advanced octahedral Pt-alloy nanoparticle catalysts for fuel cells
260 _ _ |a Weinheim, Germany
|b Wiley-VCH Verlag GmbH & Co. KGaA
|c 2016
295 1 0 |a European Microscopy Congress 2016: Proceedings
300 _ _ |a 800 - 801
336 7 _ |2 ORCID
|a CONFERENCE_PAPER
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |2 BibTeX
|a INPROCEEDINGS
336 7 _ |2 DRIVER
|a conferenceObject
336 7 _ |2 DataCite
|a Output Types/Conference Paper
336 7 _ |0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|a Contribution to a conference proceedings
|b contrib
|m contrib
|s 1485873001_18208
336 7 _ |0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|a Contribution to a book
|m contb
520 _ _ |a Octahedral Pt-Ni nanoparticles are highly attractive as fuel-cell catalysts due to their extraordinarily high activity for the oxygen-reduction-reaction (ORR). A deep understanding of their atomic-scale structure, degradation and formation is a prerequisite for their use as rationally designed nanoparticle catalysts with high activity and long-term stability.Here we present an extensive microstructural study of the growth and degradation behavior of various octahedral Pt-alloy nanoparticles using in situ transmission electron microscopy (TEM) and Cs-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with electron energy-loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy (EDX). We show that octahedral nanoparticles often show compositional anisotropy with Ni-rich {111} facets leading to complex structural degradation during ORR electrocatalysis. The Ni-rich {111} facets are preferentially etched, resulting in the formation of first concave octahedra and then Pt-rich skeletons that have less active facets (Figure 1)[1]. Furthermore, we reveal element-specific anisotropic growth as the reason for the compositional anisotropy and the limited stability. During the solvothermal synthesis, a Pt-rich nucleus evolves into precursor nanohexapods, followed by the slower step-induced deposition of Ni on the concave hexapod surface, to form octahedral facets (Figure 2)[2]. While the growth of Pt-rich hexapod is a ligand-controlled kinetic process, the step-induced deposition of the Ni-rich phase at the concave surface resembles a thermodynamically controlled process accomplished in much longer time. In order to tune the atomic-scale microstructure of the octahedra for long-term stability, we illustrate the effect of varying the growth conditions on morphology and compositional segregation by producing trimetallic PtNiCo nanooctahedra and comparing “one-step” and newly-developed “two-step” synthesis routes [3]. Furthermore we demonstrate how Pt atom surface diffusion may produce a protective Pt surface layer on top of the Ni-rich facets, resulting in advanced and more stable octahedral catalysts. Figure 3 shows a sequence of structural changes taking place on an octahedral nanoparticle during in situ heating up to 800°C using a MEMS chip heating holder (DENSsolutions, Delft, NL). It can be observed that Pt-rich corner atoms diffuse and subsequently fill the concave Ni-rich {111} facets, forming perfectly octahedral nanoparticles with flat Pt-rich {111} surfaces (Figure 3) [4].
536 _ _ |0 G:(DE-HGF)POF3-143
|a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book
700 1 _ |0 P:(DE-Juel1)166087
|a Gocyla, Martin
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Gan, Lin
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Strasser, Peter
|b 3
700 1 _ |0 P:(DE-Juel1)144121
|a Dunin-Borkowski, Rafal
|b 4
773 _ _ |a 10.1002/9783527808465.EMC2016.6030
856 4 _ |u https://juser.fz-juelich.de/record/827180/files/emc20166030.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827180/files/emc20166030.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827180/files/emc20166030.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827180/files/emc20166030.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827180/files/emc20166030.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827180/files/emc20166030.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:827180
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166087
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166087
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144121
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21