Contribution to a conference proceedings/Contribution to a book FZJ-2017-01382

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Generation of super-oscillatory electron beams beyond the diffraction limit

 ;  ;  ;  ;  ;

2016
Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, Germany

European Microscopy Congress 2016: Proceedings
16th European Microscopy Congress (EMC 2016), LyonLyon, France, 28 Aug 2016 - 2 Sep 20162016-08-282016-09-02
Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA 731 - 732 () [10.1002/9783527808465.EMC2016.6221]

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: In 1873, Ernst Abbe discovered that the imaging resolution of conventional lenses is fundamentally limited by diffraction, which, since then, has been overcome using a variety of different approaches in optical microscopy. In electron microscopy, thanks to remarkable developments in aberration corrected electron optics, the resolution of transmission electron microscopes (TEMs) and scanning TEMs (STEMs) has reached the sub-Ångström regime. However, it is still limited by instrumental stability, residual higher-order aberrations and the diffraction limit of the electron-optical system. Recently, a concept termed super-oscillation, which is analogous to the idea of super-directive antennas in the microwave community [1], was proposed [2, 3] and applied in light optics for far field imaging of sub-wavelength, barely-resolved objects beyond the diffraction limit [4]. A super-oscillating function is a band-limited function that is able to oscillate faster locally than its highest Fourier component and thereby produce an arbitrarily small spot in the far field.Here, we demonstrate experimentally for the first time a super-oscillatory electron beam whose characteristic probe size is much smaller than the Abbe diffraction limit. Figure 1(a) shows scanning electron microscopy (SEM) images of a conventional grating mask (left) and a super-oscillation off-axis hologram (right) that have the same outer diameters (10 µm). The masks were fabricated by focused ion beam milling 200-nm-thick SiN membranes coated with 150 nm Au. The masks were inserted into the C2 aperture plane of a probe-corrected FEI Titan 80-300 (S)TEM. Owing to the probe aberration corrector and relatively small numerical aperture (convergence semi-angle), diffraction-limited spots could be easily obtained from the conventional grating (Fig. 1, left), while a super-oscillatory electron probe, which was generated at the first diffraction order (Fig. 1, right), produced a much smaller hot-spot in the center. The size of the super oscillation hot-spot is approximately one third of that of the diffraction-limited spot. It could theoretically be decreased further, even below the de-Broglie wavelength of the electrons, by varying the ratio between the inner and outer radii.Further applications of such super-oscillatory electron wave functions, e.g. enhanced STEM imaging, will be presented.


Contributing Institute(s):
  1. Mikrostrukturforschung (PGI-5)
  2. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)

Appears in the scientific report 2016
Click to display QR Code for this record

The record appears in these collections:
Document types > Events > Contributions to a conference proceedings
Document types > Books > Contribution to a book
Institute Collections > ER-C > ER-C-1
Institute Collections > PGI > PGI-5
Workflow collections > Public records
Publications database

 Record created 2017-01-31, last modified 2024-06-10


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)