000827193 001__ 827193
000827193 005__ 20240610120544.0
000827193 0247_ $$2doi$$a10.1002/9783527808465.EMC2016.6494
000827193 037__ $$aFZJ-2017-01391
000827193 041__ $$aEnglish
000827193 1001_ $$0P:(DE-Juel1)161387$$aWinkler, Florian$$b0$$eCorresponding author
000827193 1112_ $$a16th European Microscopy Congress (EMC 2016)$$cLyon$$d2016-08-28 - 2016-09-02$$wFrance
000827193 245__ $$aQuantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe2
000827193 260__ $$aWeinheim, Germany$$bWiley-VCH Verlag GmbH & Co. KGaA$$c2016
000827193 29510 $$aEuropean Microscopy Congress 2016: Proceedings
000827193 300__ $$a417 - 418
000827193 3367_ $$2ORCID$$aCONFERENCE_PAPER
000827193 3367_ $$033$$2EndNote$$aConference Paper
000827193 3367_ $$2BibTeX$$aINPROCEEDINGS
000827193 3367_ $$2DRIVER$$aconferenceObject
000827193 3367_ $$2DataCite$$aOutput Types/Conference Paper
000827193 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1485873996_18211
000827193 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000827193 520__ $$aOff-axis electron holography is a powerful tool to measure electrostatic and magnetic fields at the nanoscale inside a transmission electron microscope. The electron wave that has passed through a thin specimen can be recovered from an electron hologram and the phase can be related to the specimen thickness or the electrostatic potential in and around the specimen. However, dynamical diffraction may cause a deviation from the expected linear relationship between phase and specimen thickness, which emphasizes the need for comparisons with corresponding computer simulations.Here, we study few-layer-thick two-dimensional WSe2 flakes by off-axis electron holography. Voronoi tessellation is used to spatially average the phase and amplitude of the electron wavefunction within regions of unit-cell size (see Fig. 1). A determination of specimen thickness of the WSe2 is not possible from either the phase or the amplitude alone. Instead, we show that the combined analysis of phase and amplitude from experimental measurements and simulations allows an accurate determination of the local specimen thickness. Extremely thin specimens that are tilted slightly away from the [001] zone axis show an approximately linear relationship between phase and projected potential. If the specimen thickness is known, the electrostatic potential can be determined from the measured phase.We used this combined approach to determine a value for the mean inner potential of 18.9 ± 0.8 V for WSe2, which is approximately 10% lower than the value calculated from neutral atom scattering factors. In this way, a comparison of high-resolution electron holography data with simulations has been achieved on a quantitative level, enabling an assessment of the experimental conditions under which electrostatic potentials can be extracted directly from the phases of measured wavefunctions.The authors are grateful to L. Houben, M. Lentzen, A. Thust, J. Caron and C. B. Boothroyd for discussions, as well as A. Chaturvedi and C. Kloc from the School of Materials Science and Engineering, Nanyang Technological University, Singapore for providing the WSe2 crystals. We are also grateful to the European Research Council for an Advanced Grant and for funding by the German Science Foundation (DFG) grant MA 1280/40-1
000827193 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000827193 588__ $$aDataset connected to CrossRef Book
000827193 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir H.$$b1
000827193 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b2
000827193 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b3
000827193 7001_ $$0P:(DE-HGF)0$$aYucelen, Emrah$$b4
000827193 7001_ $$0P:(DE-Juel1)164287$$aBorghardt, Sven$$b5
000827193 7001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata$$b6
000827193 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b7
000827193 773__ $$a10.1002/9783527808465.EMC2016.6494
000827193 8564_ $$uhttps://juser.fz-juelich.de/record/827193/files/emc20166494.pdf$$yRestricted
000827193 8564_ $$uhttps://juser.fz-juelich.de/record/827193/files/emc20166494.gif?subformat=icon$$xicon$$yRestricted
000827193 8564_ $$uhttps://juser.fz-juelich.de/record/827193/files/emc20166494.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000827193 8564_ $$uhttps://juser.fz-juelich.de/record/827193/files/emc20166494.jpg?subformat=icon-180$$xicon-180$$yRestricted
000827193 8564_ $$uhttps://juser.fz-juelich.de/record/827193/files/emc20166494.jpg?subformat=icon-640$$xicon-640$$yRestricted
000827193 8564_ $$uhttps://juser.fz-juelich.de/record/827193/files/emc20166494.pdf?subformat=pdfa$$xpdfa$$yRestricted
000827193 909CO $$ooai:juser.fz-juelich.de:827193$$pVDB
000827193 9141_ $$y2016
000827193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161387$$aForschungszentrum Jülich$$b0$$kFZJ
000827193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b1$$kFZJ
000827193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b2$$kFZJ
000827193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164287$$aForschungszentrum Jülich$$b5$$kFZJ
000827193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b6$$kFZJ
000827193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
000827193 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000827193 920__ $$lyes
000827193 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000827193 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000827193 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x2
000827193 980__ $$acontrib
000827193 980__ $$aVDB
000827193 980__ $$acontb
000827193 980__ $$aI:(DE-Juel1)PGI-5-20110106
000827193 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000827193 980__ $$aI:(DE-Juel1)PGI-9-20110106
000827193 980__ $$aUNRESTRICTED
000827193 981__ $$aI:(DE-Juel1)ER-C-1-20170209