001 | 827205 | ||
005 | 20240610120546.0 | ||
024 | 7 | _ | |2 doi |a 10.1063/1.4942954 |
024 | 7 | _ | |2 Handle |a 2128/13703 |
024 | 7 | _ | |a WOS:000377962500267 |2 WOS |
024 | 7 | _ | |a altmetric:10843854 |2 altmetric |
037 | _ | _ | |a FZJ-2017-01403 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |0 P:(DE-Juel1)144926 |a Kovács, A. |b 0 |e Corresponding author |
111 | 2 | _ | |a 2016 Joint MMM-Intermag Conference |c San Diego |d 2016-01-11 - 2016-01-15 |w CA |
245 | _ | _ | |a Magnetic microstructure in a stress-annealed Fe $_{73.5}$ Si $_{15.5}$ B $_{7}$ Nb $_{3}$ Cu $_{1}$ soft magnetic alloy observed using off-axis electron holography and Lorentz microscopy |
260 | _ | _ | |a New York, NY |b American Inst. of Physics |c 2016 |
300 | _ | _ | |a 056501 |
336 | 7 | _ | |2 ORCID |a CONFERENCE_PAPER |
336 | 7 | _ | |0 33 |2 EndNote |a Conference Paper |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |m journal |
336 | 7 | _ | |2 BibTeX |a INPROCEEDINGS |
336 | 7 | _ | |2 DRIVER |a conferenceObject |
336 | 7 | _ | |2 DataCite |a Output Types/Conference Paper |
336 | 7 | _ | |0 PUB:(DE-HGF)8 |2 PUB:(DE-HGF) |a Contribution to a conference proceedings |b contrib |m contrib |s 1485878336_18215 |
520 | _ | _ | |a Fe-Si-B-Nb-Cu alloys are attractive for high frequency applications due to their low coercivity and high saturation magnetization. Here, we study the effect of stress annealing on magnetic microstructure in Fe73.5Si15.5B7Nb3Cu1 using off-axis electron holography and the Fresnel mode of Lorentz transmission electron microscopy. A stress of 50 MPa was applied to selected samples during rapid annealing for 4 s, resulting in uniaxial anisotropy perpendicular to the stress direction. The examination of focused ion beam milled lamellae prepared from each sample revealed a random magnetic domain pattern in the sample that had been rapidly annealed in the absence of stress, whereas a highly regular domain pattern was observed in the stress-annealed sample. We also measured a decrease in domain wall width from ∼ 94 nm in the sample annealed without stress to ∼ 80 nm in the stress-annealed sample. |
536 | _ | _ | |0 G:(DE-HGF)POF3-143 |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |c POF3-143 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Pradeep, K. G. |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Herzer, G. |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Raabe, D. |b 3 |
700 | 1 | _ | |0 P:(DE-Juel1)144121 |a Dunin-Borkowski, Rafal |b 4 |
773 | _ | _ | |0 PERI:(DE-600)2583909-3 |a 10.1063/1.4942954 |g Vol. 6, no. 5, p. 056501 - |n 5 |p 056501 - |t AIP Advances |v 6 |x 2158-3226 |y 2016 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827205/files/1.4942954-1.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827205/files/1.4942954-1.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827205/files/1.4942954-1.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827205/files/1.4942954-1.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827205/files/1.4942954-1.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827205/files/1.4942954-1.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:827205 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)144926 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)144121 |a Forschungszentrum Jülich |b 4 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-143 |1 G:(DE-HGF)POF3-140 |2 G:(DE-HGF)POF3-100 |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |a Creative Commons Attribution CC BY 3.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b AIP ADV : 2015 |
915 | _ | _ | |0 StatID:(DE-HGF)0501 |2 StatID |a DBCoverage |b DOAJ Seal |
915 | _ | _ | |0 StatID:(DE-HGF)0500 |2 StatID |a DBCoverage |b DOAJ |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|