000827210 001__ 827210
000827210 005__ 20210129225807.0
000827210 0247_ $$2doi$$a10.1117/1.JMM.15.4.043502
000827210 0247_ $$2ISSN$$a1537-1646
000827210 0247_ $$2ISSN$$a1932-5134
000827210 0247_ $$2ISSN$$a1932-5150
000827210 0247_ $$2WOS$$aWOS:000397068400004
000827210 037__ $$aFZJ-2017-01408
000827210 082__ $$a620
000827210 1001_ $$0P:(DE-HGF)0$$aBrose, Sascha$$b0$$eCorresponding author
000827210 245__ $$aAchromatic Talbot lithography with partially coherent extreme ultraviolet radiation: process window analysis
000827210 260__ $$aBellingham, Wash.$$bSPIE90039$$c2016
000827210 3367_ $$2DRIVER$$aarticle
000827210 3367_ $$2DataCite$$aOutput Types/Journal article
000827210 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1486371749_6851
000827210 3367_ $$2BibTeX$$aARTICLE
000827210 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827210 3367_ $$00$$2EndNote$$aJournal Article
000827210 520__ $$aThe main purpose of this work is the experimental determination of the process window for achromatic Talbot lithography with partially coherent extreme ultraviolet (EUV) radiation. This work has been performed using the EUV laboratory exposure tool. It consists of a discharge produced plasma source with a direct beam path to a phase-shifting transmission mask, avoiding losses due to additional optical components, the photoresist-coated wafer, and a positioning system for each component. Both the source and the mask are optimized for 11-nm wavelength. The process window has been identified by a systematic analysis of several exposure series. The optimization of exposure parameters resulted in 50-nm half-pitch of the wafer features using a transmission mask with a rectangular dot array of 70-nm half-pitch. The depth of field is found to be 20  μm, and it can be extended by spatial filtering. The exposure dose and mask–wafer distance are varied around their optimal values to estimate the process window, using defectivity of the pattern as a control parameter.
000827210 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000827210 588__ $$aDataset connected to CrossRef
000827210 7001_ $$0P:(DE-HGF)0$$aTempeler, Jenny$$b1
000827210 7001_ $$0P:(DE-HGF)0$$aDanylyuk, Serhiy$$b2
000827210 7001_ $$0P:(DE-HGF)0$$aLoosen, Peter$$b3
000827210 7001_ $$0P:(DE-Juel1)157957$$aJuschkin, Larissa$$b4
000827210 773__ $$0PERI:(DE-600)2408595-9$$a10.1117/1.JMM.15.4.043502$$gVol. 15, no. 4, p. 043502 -$$n4$$p043502 -$$tJournal of micro/nanolithography, MEMS and MOEMS$$v15$$x1932-5150$$y2016
000827210 8564_ $$uhttps://juser.fz-juelich.de/record/827210/files/JM3_15_4_043502.pdf$$yRestricted
000827210 8564_ $$uhttps://juser.fz-juelich.de/record/827210/files/JM3_15_4_043502.gif?subformat=icon$$xicon$$yRestricted
000827210 8564_ $$uhttps://juser.fz-juelich.de/record/827210/files/JM3_15_4_043502.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000827210 8564_ $$uhttps://juser.fz-juelich.de/record/827210/files/JM3_15_4_043502.jpg?subformat=icon-180$$xicon-180$$yRestricted
000827210 8564_ $$uhttps://juser.fz-juelich.de/record/827210/files/JM3_15_4_043502.jpg?subformat=icon-640$$xicon-640$$yRestricted
000827210 8564_ $$uhttps://juser.fz-juelich.de/record/827210/files/JM3_15_4_043502.pdf?subformat=pdfa$$xpdfa$$yRestricted
000827210 909CO $$ooai:juser.fz-juelich.de:827210$$pVDB
000827210 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827210 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000827210 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000827210 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MICRO-NANOLITH MEM : 2015
000827210 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827210 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827210 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000827210 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000827210 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000827210 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827210 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000827210 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827210 9141_ $$y2016
000827210 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000827210 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000827210 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000827210 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000827210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157957$$aForschungszentrum Jülich$$b4$$kFZJ
000827210 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000827210 920__ $$lyes
000827210 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000827210 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000827210 980__ $$ajournal
000827210 980__ $$aVDB
000827210 980__ $$aUNRESTRICTED
000827210 980__ $$aI:(DE-Juel1)PGI-9-20110106
000827210 980__ $$aI:(DE-82)080009_20140620