001     827210
005     20210129225807.0
024 7 _ |2 doi
|a 10.1117/1.JMM.15.4.043502
024 7 _ |2 ISSN
|a 1537-1646
024 7 _ |2 ISSN
|a 1932-5134
024 7 _ |2 ISSN
|a 1932-5150
024 7 _ |2 WOS
|a WOS:000397068400004
037 _ _ |a FZJ-2017-01408
082 _ _ |a 620
100 1 _ |0 P:(DE-HGF)0
|a Brose, Sascha
|b 0
|e Corresponding author
245 _ _ |a Achromatic Talbot lithography with partially coherent extreme ultraviolet radiation: process window analysis
260 _ _ |a Bellingham, Wash.
|b SPIE90039
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1486371749_6851
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The main purpose of this work is the experimental determination of the process window for achromatic Talbot lithography with partially coherent extreme ultraviolet (EUV) radiation. This work has been performed using the EUV laboratory exposure tool. It consists of a discharge produced plasma source with a direct beam path to a phase-shifting transmission mask, avoiding losses due to additional optical components, the photoresist-coated wafer, and a positioning system for each component. Both the source and the mask are optimized for 11-nm wavelength. The process window has been identified by a systematic analysis of several exposure series. The optimization of exposure parameters resulted in 50-nm half-pitch of the wafer features using a transmission mask with a rectangular dot array of 70-nm half-pitch. The depth of field is found to be 20  μm, and it can be extended by spatial filtering. The exposure dose and mask–wafer distance are varied around their optimal values to estimate the process window, using defectivity of the pattern as a control parameter.
536 _ _ |0 G:(DE-HGF)POF3-521
|a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Tempeler, Jenny
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Danylyuk, Serhiy
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Loosen, Peter
|b 3
700 1 _ |0 P:(DE-Juel1)157957
|a Juschkin, Larissa
|b 4
773 _ _ |0 PERI:(DE-600)2408595-9
|a 10.1117/1.JMM.15.4.043502
|g Vol. 15, no. 4, p. 043502 -
|n 4
|p 043502 -
|t Journal of micro/nanolithography, MEMS and MOEMS
|v 15
|x 1932-5150
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/827210/files/JM3_15_4_043502.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827210/files/JM3_15_4_043502.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827210/files/JM3_15_4_043502.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827210/files/JM3_15_4_043502.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827210/files/JM3_15_4_043502.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827210/files/JM3_15_4_043502.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:827210
|p VDB
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 2
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-HGF)0
|a RWTH Aachen
|b 3
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)157957
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-521
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J MICRO-NANOLITH MEM : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0550
|2 StatID
|a No Authors Fulltext
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21