000827237 001__ 827237
000827237 005__ 20210129225811.0
000827237 0247_ $$2doi$$a10.1007/s12665-016-6361-3
000827237 0247_ $$2ISSN$$a1866-6280
000827237 0247_ $$2ISSN$$a1866-6299
000827237 0247_ $$2WOS$$aWOS:000393021800013
000827237 037__ $$aFZJ-2017-01431
000827237 082__ $$a550
000827237 1001_ $$0P:(DE-Juel1)136836$$aAltdorff, Daniel$$b0$$eCorresponding author
000827237 245__ $$aPotential of catchment-wide soil water content prediction using electromagnetic induction in a forest ecosystem
000827237 260__ $$aBerlin$$bSpringer$$c2017
000827237 3367_ $$2DRIVER$$aarticle
000827237 3367_ $$2DataCite$$aOutput Types/Journal article
000827237 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1486375586_6855
000827237 3367_ $$2BibTeX$$aARTICLE
000827237 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827237 3367_ $$00$$2EndNote$$aJournal Article
000827237 520__ $$aMapping of soil water content (SWC) by electromagnetic induction (EMI) is an established method to obtain field-scale SWC information. However, the relationship between SWC and the apparent electrical conductivity (ECa) measured with EMI is complex and affected by several confounding factors at the catchment scale such as variable porosity (ϕ) and pore water electrical conductivity (σw). In this study, we investigated these confounding factors using a time-lapse EMI data set obtained in a forest ecosystem with soils of low ECa and catchment-wide SWC data provided by a wireless soil moisture sensor network. To assess the impact of variable ϕ on the accuracy of SWC estimates, we compared three different models to relate SWC and ECa: (i) a linear regression model and two nonlinear models based on Archie’s equation with (ii) constant ϕ and (iii) variable ϕ. The linear model reached a prediction accuracy of RMSE = 5.83 vol%, while the Archie models increased the accuracy to RMSE = 4.55 vol% (constant ϕ) and RMSE = 4.20 vol% (variable ϕ). Although we found strong spatial similarities between SWC and ECa maps, the temporal trends in SWC and ECa were inconsistent. This was attributed to temporal variations in σw due to seasonal changes in ion concentrations of the soil pore water. To support this hypothesis, σw was calculated from the measured ECa and the known soil saturation from SoilNet. The resulting σw maps showed highly structured and consistent patterns. We thus conclude that in addition to variation in SWC and ϕ, spatiotemporal variations of σw affected the ECa measured with EMI. These potentially confounding factors in the interpretation of EMI measurements in terms of SWC have not been sufficiently recognized in the literature so far, and the results presented in this study indicate a range of limitations for the use of EMI to monitor spatiotemporal changes in SWC at test sites with low ECa.
000827237 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000827237 588__ $$aDataset connected to CrossRef
000827237 7001_ $$0P:(DE-Juel1)145932$$avon Hebel, Christian$$b1
000827237 7001_ $$0P:(DE-Juel1)145704$$aBorchard, Nils$$b2
000827237 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b3
000827237 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b4
000827237 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5
000827237 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b6$$eCorresponding author
000827237 773__ $$0PERI:(DE-600)2493699-6$$a10.1007/s12665-016-6361-3$$gVol. 76, no. 3, p. 111$$n3$$p111$$tEnvironmental earth sciences$$v76$$x1866-6299$$y2017
000827237 8564_ $$uhttps://juser.fz-juelich.de/record/827237/files/art_10.1007_s12665-016-6361-3.pdf$$yRestricted
000827237 8564_ $$uhttps://juser.fz-juelich.de/record/827237/files/art_10.1007_s12665-016-6361-3.gif?subformat=icon$$xicon$$yRestricted
000827237 8564_ $$uhttps://juser.fz-juelich.de/record/827237/files/art_10.1007_s12665-016-6361-3.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000827237 8564_ $$uhttps://juser.fz-juelich.de/record/827237/files/art_10.1007_s12665-016-6361-3.jpg?subformat=icon-180$$xicon-180$$yRestricted
000827237 8564_ $$uhttps://juser.fz-juelich.de/record/827237/files/art_10.1007_s12665-016-6361-3.jpg?subformat=icon-640$$xicon-640$$yRestricted
000827237 8564_ $$uhttps://juser.fz-juelich.de/record/827237/files/art_10.1007_s12665-016-6361-3.pdf?subformat=pdfa$$xpdfa$$yRestricted
000827237 909CO $$ooai:juser.fz-juelich.de:827237$$pVDB:Earth_Environment$$pVDB
000827237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145932$$aForschungszentrum Jülich$$b1$$kFZJ
000827237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b3$$kFZJ
000827237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b4$$kFZJ
000827237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b5$$kFZJ
000827237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich$$b6$$kFZJ
000827237 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000827237 9141_ $$y2017
000827237 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000827237 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827237 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827237 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000827237 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827237 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827237 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000827237 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000827237 920__ $$lyes
000827237 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000827237 980__ $$ajournal
000827237 980__ $$aVDB
000827237 980__ $$aI:(DE-Juel1)IBG-3-20101118
000827237 980__ $$aUNRESTRICTED