%0 Journal Article
%A Udomsilp, David
%A Roehrens, D.
%A Menzler, N. H.
%A Opitz, A. K.
%A Guillon, Olivier
%A Bram, M.
%T Novel processing of La0.$_{58}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_{3−δ}$ cathodes for metal-supported fuel cells
%J Materials letters
%V 192
%@ 0167-577X
%C New York, NY [u.a.]
%I Elsevier
%M FZJ-2017-01460
%P 173-176
%D 2017
%X Metal-supported solid oxide fuel cells (MSCs) have gained high attention as they offer a possibility to utilize solid oxide fuel cells (SOFCs) in mobile applications such as auxiliary power units in heavy duty vehicles. Cathode reliability is one of the main issues of MSC development, since cathodes tend to degrade rapidly after being in-situ activated during onset of the stack operation. In the present study, a novel sintering route for La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode material was developed. Sintering of the screen printed cathodes was performed before stack operation at 950 °C in reducing Ar atmosphere for 3 h. Under these conditions, severe oxidation of the metallic substrate and the Ni in the anode was avoided reliably.For proof of concept, phase stability and microstructure of the MSC cathodes were characterized. The results reveal that cathode layers sintered in Ar exhibit substantially improved adherence and mechanical stability compared to conventionally processed MSC cathodes, making them ready for systematic investigation of electrochemical performance.
%F PUB:(DE-HGF)16
%9 Journal Article
%U <Go to ISI:>//WOS:000394064500044
%R 10.1016/j.matlet.2016.12.027
%U https://juser.fz-juelich.de/record/827266