000827267 001__ 827267
000827267 005__ 20220930130116.0
000827267 0247_ $$2doi$$a10.1038/nphys4070
000827267 0247_ $$2ISSN$$a1745-2473
000827267 0247_ $$2ISSN$$a1745-2481
000827267 0247_ $$2WOS$$aWOS:000402604200016
000827267 0247_ $$2altmetric$$aaltmetric:15959572
000827267 037__ $$aFZJ-2017-01461
000827267 041__ $$aEnglish
000827267 082__ $$a530
000827267 1001_ $$0P:(DE-HGF)0$$aHeedt, Sebastian$$b0
000827267 245__ $$aSignatures of interaction-induced helical gaps in nanowire quantum point contacts
000827267 260__ $$aBasingstoke$$bNature Publishing Group$$c2017
000827267 3367_ $$2DRIVER$$aarticle
000827267 3367_ $$2DataCite$$aOutput Types/Journal article
000827267 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1496747253_28734
000827267 3367_ $$2BibTeX$$aARTICLE
000827267 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827267 3367_ $$00$$2EndNote$$aJournal Article
000827267 520__ $$aSpin–momentum locking in a semiconductor device with strong spin–orbit coupling (SOC) is thought to be an important prerequisite for the formation of Majorana bound states1, 2, 3. Such a helical state is predicted in one-dimensional (1D) nanowires subject to strong Rashba SOC and spin-mixing4—its hallmark being a characteristic re-entrant behaviour in the conductance. Here, we report direct experimental observations of the re-entrant conductance feature, which reveals the formation of a helical liquid, in the lowest 1D subband of an InAs nanowire. Surprisingly, the feature is very prominent also in the absence of magnetic fields. This behaviour suggests that exchange interactions have a substantial impact on transport in our device. We attribute the opening of the pseudogap to spin-flipping two-particle backscattering5, 6, 7. The all-electric origin of the ideal helical transport could have important implications for topological quantum computing.
000827267 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000827267 588__ $$aDataset connected to CrossRef
000827267 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b1$$eCorresponding author
000827267 7001_ $$0P:(DE-HGF)0$$aTraverso Ziani, N.$$b2
000827267 7001_ $$0P:(DE-HGF)0$$aCrepin, F.$$b3
000827267 7001_ $$0P:(DE-HGF)0$$aProst, W.$$b4
000827267 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, Stefan$$b5
000827267 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b6
000827267 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7
000827267 7001_ $$0P:(DE-HGF)0$$aTrauzettel, B.$$b8
000827267 773__ $$0PERI:(DE-600)2206346-8$$a10.1038/nphys4070$$p563–567$$tNature physics$$v13$$x1745-2473$$y2017
000827267 8564_ $$uhttps://juser.fz-juelich.de/record/827267/files/nphys4070.pdf$$yRestricted
000827267 8564_ $$uhttps://juser.fz-juelich.de/record/827267/files/nphys4070.gif?subformat=icon$$xicon$$yRestricted
000827267 8564_ $$uhttps://juser.fz-juelich.de/record/827267/files/nphys4070.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000827267 8564_ $$uhttps://juser.fz-juelich.de/record/827267/files/nphys4070.jpg?subformat=icon-180$$xicon-180$$yRestricted
000827267 8564_ $$uhttps://juser.fz-juelich.de/record/827267/files/nphys4070.jpg?subformat=icon-640$$xicon-640$$yRestricted
000827267 8564_ $$uhttps://juser.fz-juelich.de/record/827267/files/nphys4070.pdf?subformat=pdfa$$xpdfa$$yRestricted
000827267 8767_ $$82676062458$$92017-06-13$$d2017-02-01$$eColour charges$$jZahlung erfolgt$$z4 Abb.
000827267 909CO $$ooai:juser.fz-juelich.de:827267$$pOpenAPC$$pVDB$$popenCost
000827267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140272$$aForschungszentrum Jülich$$b0$$kFZJ
000827267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b1$$kFZJ
000827267 9101_ $$0I:(DE-Juel1)PGI-8-PT-20110228$$6P:(DE-Juel1)128856$$aPGI-8-PT$$b5$$kPGI-8-PT
000827267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich$$b6$$kFZJ
000827267 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b7$$kFZJ
000827267 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000827267 9141_ $$y2017
000827267 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000827267 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PROTOC : 2015
000827267 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827267 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827267 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000827267 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000827267 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827267 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000827267 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827267 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827267 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000827267 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNAT PROTOC : 2015
000827267 920__ $$lyes
000827267 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000827267 9201_ $$0I:(DE-Juel1)PGI-8-PT-20110228$$kPGI-8-PT$$lPGI-8-PT$$x1
000827267 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000827267 980__ $$ajournal
000827267 980__ $$aVDB
000827267 980__ $$aI:(DE-Juel1)PGI-9-20110106
000827267 980__ $$aI:(DE-Juel1)PGI-8-PT-20110228
000827267 980__ $$aI:(DE-82)080009_20140620
000827267 980__ $$aAPC
000827267 980__ $$aUNRESTRICTED
000827267 9801_ $$aAPC