001     827267
005     20220930130116.0
024 7 _ |a 10.1038/nphys4070
|2 doi
024 7 _ |a 1745-2473
|2 ISSN
024 7 _ |a 1745-2481
|2 ISSN
024 7 _ |a WOS:000402604200016
|2 WOS
024 7 _ |a altmetric:15959572
|2 altmetric
037 _ _ |a FZJ-2017-01461
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Heedt, Sebastian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Signatures of interaction-induced helical gaps in nanowire quantum point contacts
260 _ _ |a Basingstoke
|c 2017
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1496747253_28734
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Spin–momentum locking in a semiconductor device with strong spin–orbit coupling (SOC) is thought to be an important prerequisite for the formation of Majorana bound states1, 2, 3. Such a helical state is predicted in one-dimensional (1D) nanowires subject to strong Rashba SOC and spin-mixing4—its hallmark being a characteristic re-entrant behaviour in the conductance. Here, we report direct experimental observations of the re-entrant conductance feature, which reveals the formation of a helical liquid, in the lowest 1D subband of an InAs nanowire. Surprisingly, the feature is very prominent also in the absence of magnetic fields. This behaviour suggests that exchange interactions have a substantial impact on transport in our device. We attribute the opening of the pseudogap to spin-flipping two-particle backscattering5, 6, 7. The all-electric origin of the ideal helical transport could have important implications for topological quantum computing.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 1
|e Corresponding author
700 1 _ |a Traverso Ziani, N.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Crepin, F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Prost, W.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Trellenkamp, Stefan
|0 P:(DE-Juel1)128856
|b 5
700 1 _ |a Schubert, Jürgen
|0 P:(DE-Juel1)128631
|b 6
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 7
700 1 _ |a Trauzettel, B.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1038/nphys4070
|0 PERI:(DE-600)2206346-8
|p 563–567
|t Nature physics
|v 13
|y 2017
|x 1745-2473
856 4 _ |u https://juser.fz-juelich.de/record/827267/files/nphys4070.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827267/files/nphys4070.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827267/files/nphys4070.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827267/files/nphys4070.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827267/files/nphys4070.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827267/files/nphys4070.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:827267
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)140272
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128634
910 1 _ |a PGI-8-PT
|0 I:(DE-Juel1)PGI-8-PT-20110228
|k PGI-8-PT
|b 5
|6 P:(DE-Juel1)128856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)125588
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT PROTOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NAT PROTOC : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-8-PT-20110228
|k PGI-8-PT
|l PGI-8-PT
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)PGI-8-PT-20110228
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21