000827319 001__ 827319
000827319 005__ 20210129225819.0
000827319 0247_ $$2arXiv$$aarXiv:1702.00309
000827319 0247_ $$2Handle$$a2128/13891
000827319 0247_ $$2altmetric$$aaltmetric:16043336
000827319 037__ $$aFZJ-2017-01490
000827319 082__ $$a530
000827319 1001_ $$0P:(DE-HGF)0$$aVarnhorst, L.$$b0$$eCorresponding author
000827319 1112_ $$a34th annual International Symposium on Lattice Field Theory$$cSouthampton$$d2016-07-24 - 2016-07-30$$gLattice 2016$$wUK
000827319 245__ $$aUp and down quark masses and corrections to Dashen's theorem from lattice QCD and quenched QED
000827319 260__ $$aTrieste$$bSISSA$$c2017
000827319 300__ $$a7 p.
000827319 3367_ $$2ORCID$$aCONFERENCE_PAPER
000827319 3367_ $$033$$2EndNote$$aConference Paper
000827319 3367_ $$2BibTeX$$aINPROCEEDINGS
000827319 3367_ $$2DRIVER$$aconferenceObject
000827319 3367_ $$2DataCite$$aOutput Types/Conference Paper
000827319 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1488267479_6797
000827319 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000827319 4900_ $$aProceedings of Science LATTICE2016 200
000827319 520__ $$aWe present a determination of the corrections to Dashen's theorem and of the individual up and down quark masses from a lattice calculation based on quenched QED and $N_f =2+1$ QCD simulations with 5 lattice spacings down to 0.054 fm. The simulations feature lattice sizes up to 6 fm and average up-down quark masses all the way down to their physical value. For the parameter which quantifies violations to Dashens's theorem we obtain $\epsilon=0.73(2)(5)(17)$, where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, $m_u=2.27(6)(5)(4) \, MeV$ and $m_d=4.67(6)(5)(4) \, MeV$ in the $\overline{MS}$ scheme at $2 \, GeV$ and the isospin breaking ratios $m_u/m_d=0.485(11)(8)(14)$, $R=38.2(1.1)(0.8)(1.4)$ and $Q=23.4(0.4)(0.3)(0.4)$. Our results exclude the $m_u=0$ solution to the strong CP problem by more than 24 standard deviations.
000827319 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000827319 588__ $$aDataset connected to arXivarXiv
000827319 7001_ $$0P:(DE-Juel1)132580$$aDurr, S.$$b1
000827319 7001_ $$0P:(DE-HGF)0$$aFodor, Z.$$b2
000827319 7001_ $$0P:(DE-HGF)0$$aHoelbling, C.$$b3
000827319 7001_ $$0P:(DE-Juel1)132171$$aKrieg, S.$$b4
000827319 7001_ $$0P:(DE-HGF)0$$aLellouch, L.$$b5
000827319 7001_ $$0P:(DE-HGF)0$$aPortelli, A.$$b6
000827319 7001_ $$0P:(DE-HGF)0$$aSastre, A.$$b7
000827319 7001_ $$0P:(DE-Juel1)161563$$aSzabo, Kalman$$b8
000827319 773__ $$0PERI:(DE-600)2642026-0$$p200$$vLATTICE2016$$x1824-8039$$y2017
000827319 8564_ $$uhttps://pos.sissa.it/archive/conferences/256/200/LATTICE2016_200.pdf
000827319 8564_ $$uhttps://juser.fz-juelich.de/record/827319/files/LATTICE2016_200.pdf$$yOpenAccess
000827319 8564_ $$uhttps://juser.fz-juelich.de/record/827319/files/LATTICE2016_200.gif?subformat=icon$$xicon$$yOpenAccess
000827319 8564_ $$uhttps://juser.fz-juelich.de/record/827319/files/LATTICE2016_200.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827319 8564_ $$uhttps://juser.fz-juelich.de/record/827319/files/LATTICE2016_200.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827319 8564_ $$uhttps://juser.fz-juelich.de/record/827319/files/LATTICE2016_200.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827319 8564_ $$uhttps://juser.fz-juelich.de/record/827319/files/LATTICE2016_200.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827319 909CO $$ooai:juser.fz-juelich.de:827319$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000827319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132580$$aForschungszentrum Jülich$$b1$$kFZJ
000827319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich$$b4$$kFZJ
000827319 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161563$$aForschungszentrum Jülich$$b8$$kFZJ
000827319 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000827319 9141_ $$y2017
000827319 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827319 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000827319 920__ $$lyes
000827319 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000827319 980__ $$acontrib
000827319 980__ $$aVDB
000827319 980__ $$aUNRESTRICTED
000827319 980__ $$acontb
000827319 980__ $$aI:(DE-Juel1)JSC-20090406
000827319 9801_ $$aFullTexts