001     827366
005     20240619083535.0
024 7 _ |a 10.1063/1.4975605
|2 doi
024 7 _ |a 2128/13930
|2 Handle
024 7 _ |a WOS:000395902000029
|2 WOS
037 _ _ |a FZJ-2017-01502
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Korculanin, Olivera
|0 P:(DE-Juel1)161552
|b 0
|u fzj
245 _ _ |a Anamalous structual response of nematic colloidal platelets subjected to large amplitude stress oscillations
260 _ _ |a Melville, NY
|c 2017
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1489485284_21856
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Time-resolved small angle X-ray measurements are used to investigate the dynamic response to nonlinear oscillatory stresses and strains of a nematic dispersion of colloidal gibbsite platelets. We track the full 3D rotational motion of the director by employing plate-plate and concentric cylinder Couette geometries as well as a vertical X-ray beam. Under nonlinear oscillatory stress, we observe strong offsets in the rheological response as well as asymmetrical behavior in the microscopic structural response. This offset and asymmetry are connected to the yielding behavior of the platelets. By increasing the stress amplitude, we observed that the offset of the rheological response diminishes and the microscopic response becomes more symmetric; however, this strongly depends on the frequency of the stress input, and hence the time necessary for the system to yield.I. INTRODUCTI
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
700 1 _ |a Hermida-Merino, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hirsemann, H
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Struth, B.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rogers, S. A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lettinga, M.P.
|0 P:(DE-Juel1)130797
|b 5
|e Corresponding author
773 _ _ |a 10.1063/1.4975605
|0 PERI:(DE-600)2130785-4
|p 023102
|t Physics of fluids
|v 29
|y 2017
|x 0031-9171
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/827366/files/1.4975605.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/827366/files/1.4975605.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/827366/files/1.4975605.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/827366/files/1.4975605.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/827366/files/1.4975605.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/827366/files/1.4975605.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:827366
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130797
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130797
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21