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3Zernike Institute for Advanced Materials, University of Groningen, NL-9747AG Groningen, The Netherlands
4RWTH Aachen University, D-52056 Aachen, Germany

(Received 21 October 2016; published 31 January 2017)

The real-time broadening of density profiles starting from nonequilibrium states is at the center of transport

in condensed-matter systems and dynamics in ultracold atomic gases. Initial profiles close to equilibrium are

expected to evolve according to the linear response, e.g., as given by the current correlator evaluated exactly at

equilibrium. Significantly off equilibrium, the linear response is expected to break down and even a description in

terms of canonical ensembles is questionable. We unveil that single pure states with density profiles of maximum

amplitude yield a broadening in perfect agreement with the linear response, if the structure of these states

involves randomness in terms of decoherent off-diagonal density-matrix elements. While these states allow for

spin diffusion in the XXZ spin-1/2 chain at large exchange anisotropies, coherences yield entirely different

behavior.

DOI: 10.1103/PhysRevB.95.035155

I. INTRODUCTION

The mere existence of equilibration and thermalization is a

key issue in many areas of modern many-body physics. While

this question has a long and fertile history, it has experienced

an upsurge of interest in recent years [1] due to the advent of

cold-atomic gases [2] as well as the discovery of new states of

matter such as many-body localized phases [3]. In particular,

the theoretical understanding has seen substantial progress by

the fascinating concepts of eigenstate thermalization [4–6]

and typicality of pure quantum states [7–14], as well as by

the invention of powerful numerical methods such as density-

matrix renormalization group [15]. Much less is known on the

route to equilibrium as such [16] and still the derivation of the

conventional laws of (exponential) relaxation and (diffusive)

transport on the basis of truly microscopic principles is a

challenge to theory [17].

In strictly isolated systems, any coupling to heat baths

or particle reservoirs and any driving by external forces is

absent. In such systems, the only possibility to induce a

nonequilibrium process is the preparation of a proper initial

state. While different ways of preparation can be chosen, a

sudden quench of the Hamiltonian is a common preparation

scheme [18]. However, once a specific state is selected, a

crucial question is the following: To what extent is this

state a nonequilibrium state? To answer this question, it is

natural to measure the observable one is interested in. If the

expectation value is far from equilibrium, the state should be

also. If this value is close to equilibrium, the state should

be correspondingly. Moreover, only in the latter case, the

resulting dynamics of the expectation value and linear response

theory are expected to agree with each other. While this line of

reasoning is certainly intuitive, it neglects internal degrees of

freedom of the initial state. In particular, the measurement of a
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single observable cannot detect whether the underlying state is

pure or mixed, entangled or nonentangled, etc. Therefore, an

intriguing question is the following: Do such internal details

play any role in the dynamics of an expectation value?

In this paper, we investigate exactly this question for

the anisotropic spin-1/2 Heisenberg chain. Dynamics in this

integrable many-body model has been under active scrutiny in

various theoretical works and, in particular, spin dynamics

constitutes a demanding problem resolved only partially

despite much effort [19–40], even within the linear response

regime and at high temperatures. While it has become clear

that quasilocal conservation laws [25,26] necessarily lead

to ballistic behavior below the isotropic point, numerical

studies [36–39] have reported signatures of diffusion above

this point, in agreement with perturbation theory [39] and

classical simulations [40].

To investigate spin transport, we first introduce a class of

pure initial states. These initial states feature identical density

profiles, where a maximum δ peak is located in the middle of

the chain and lies on top of a homogeneous background, similar

to [38]. For a subclass with internal randomness, we then show

analytically that the resulting nonequilibrium dynamics can

be related to equilibrium correlation functions via the concept

of typicality. This relation is verified, in addition, by large-

scale numerical simulations. These numerical simulations

also unveil the existence of remarkably clean diffusion for

large exchange anisotropies, as one of our central findings.

Eventually, we demonstrate that entirely different behavior

emerges without any randomness in the initial state.

II. MODEL AND OBSERVABLES

The Hamiltonian of the XXZ spin-1/2 chain with periodic

boundary conditions reads

H = J

L
∑

r=1

(

Sx
r Sx

r+1 + Sy
r S

y

r+1 + �Sz
r S

z
r+1

)

, (1)
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where S
x,y,z
r are spin-1/2 operators at site r , L is the number

of sites, J > 0 is the antiferromagnetic exchange coupling

constant, and (� − 1) is the anisotropy. For all parameters, this

model is integrable in terms of the Bethe ansatz and the total

magnetization Sz =
∑

r Sz
r is a strictly conserved quantity. We

take into account all subsectors of Sz, i.e., we consider the case

〈Sz〉 = 0. We note that via the Jordan-Wigner transformation,

this model can be mapped onto a chain of spinless fermions

with particle interactions of strength � and total particle

number N = Sz + L/2, i.e., 〈N〉 = L/2 (see Appendix A for

the half-filling case N = L/2).

We are interested in the nonequilibrium dynamics of

the local occupation numbers nr = Sz
r + 1/2. Specifically,

we consider the expectation values pr (t) = tr[nr ρ(t)] for

the density matrix ρ(t) at time t . In this way, we study

the time-dependent broadening of density profiles for a given

initial state ρ(0). In this paper, we focus on pure states

ρ(0) = |ψ(0)〉〈ψ(0)|.

III. INITIAL STATES

Obviously, it is possible to choose many different initial

states |ψ(0)〉 and the resulting dynamics can depend on details

of the specific choice. A frequently used preparation scheme

is a quantum quench, i.e., |ψ(0)〉 is the eigenstate of another

Hamiltonian. In this paper, however, we proceed in a different

way.

To introduce our class of initial states, let |ϕk〉 be the

common eigenbasis of all nr , i.e., the Ising basis. Then, this

class reads

|ψ(0)〉 ∝ nL/2 |�〉, |�〉 =
2L

∑

k=1

ck |ϕk〉, (2)

where ck are complex coefficients and nL/2 projects onto

Ising states with a particle in the middle of the chain. By

construction, pL/2(0) = 1 is maximum.

In the above class, a particular state is the one where

all ck are the same. It yields pr �=L/2(0) = peq. = 1/2 and

still pL/2(0) = 1. Hence, its density profile has a δ peak

on top of a homogeneous background. However, the same

density profile also results when the ck are drawn at random

according to the unitary invariant Haar measure [11] (where

the real and imaginary parts of the ck are drawn from a

Gaussian distribution with zero mean, as done in our numerical

simulations performed below). In other words, it is impossible

to distinguish the two states with equal and random coefficients

by a measurement of their initial density profiles pr (0) [41].

Only at times t > 0, their density profiles pr (t) can be different,

if these density profiles differ at all. Note that similar pr (0)

have been studied in Ref. [38].

Because our initial states are pure and have maximum

pL/2(0) = 1 as well, these states have to be considered as

far-from-equilibrium states. Thus, it is natural to expect that

the resulting dynamics of pr (t) cannot be described by linear

response theory. However, such an expectation turns out to

be wrong for the case of random ck . In this case, |�〉 is a

typical state [7–14], i.e., a trace tr[•] can be approximated

by the expectation value 〈�| • |�〉 with high accuracy in large

Hilbert spaces. Using this fact and exact math (see Appendix B

for more details), we find the relation

pr (t) − peq = 2 〈(nL/2 − peq)(nr (t) − peq)〉, (3)

where 〈•〉 = tr[•]/2L. This relation is the first main result of

our paper. It unveils that the expectation value pr (t) of a far-

from-equilibrium state is directly connected to an equilibrium

correlation function. It is important to note that such a relation

cannot be derived for the other case of equal ck (see also

Appendix C for the specific type of randomness).

Due to the above relation, it is also possible to connect our

nonequilibrium dynamics to the Kubo formula. To this end,

one has to define the spatial variance,

σ (t)2 =
L

∑

r=1

r2 δpr (t) −

[

L
∑

r=1

r δpr (t)

]2

, (4)

with δpr (t) = 2[pr (t) − peq] and
∑L

r=1 δpr (t) = 1. Then, fol-

lowing Ref. [42], it is straightforward to show that the time

derivative of this variance,

d

dt
σ (t)2 = 2 D(t), (5)

is given by the time-dependent diffusion coefficient,

D(t) =
4

L

∫ t

0

dt ′ 〈j (t ′)j 〉, (6)

where j =
∑L

r=1 Sx
r S

y

r+1 − S
y
r Sx

r+1 is the well-known spin

current. For � = 0, [j,H ] = 0 leads to D(t) ∝ t such that

σ 2(t) ∝ t2 scales ballistically. The partial conservation of j

for � < 1 [19–31] also excludes diffusive scaling σ (t)2 ∝ t

in this � regime. In fact, signatures of diffusion at high

temperatures have been found only in the regime of large

anisotropies, � > 1 [36–39]. Note that σ (t)2 ∝ t is merely

a necessary and not sufficient criterion for diffusion since, by

definition, the variance yields no information beyond the width

of the distribution δpr (t). This is why we study the full space

dependence. For a recent numerical survey of Eq. (5), see [43].

IV. NUMERICAL METHOD AND RESULTS

Numerically, the time evolution of a pure state |ψ(t)〉 can be

calculated by the method of full exact diagonalization. But this

method is restricted to L ∼ 20 sites, even if symmetries such

as the translation invariance of H are taken into account. Thus,

we proceed differently and rely on a forward propagation of

|ψ(t)〉 in real time. Such a propagation can be done by the

use of fourth-order Runge-Kutta [14,30,31] or more sophisti-

cated schemes such as Trotter decompositions or Chebyshev

polynomials [44,45]. Here, we use a massively parallelized

implementation of a Chebyshev-polynomial algorithm. In this

way, we can treat system sizes as large as L = 36. For such L,

we can guarantee that the initial δ peak is located sufficiently

far from the boundary of the chain. Otherwise, we would have

to deal with trivial finite-size effects and also Eq. (5) would

not hold [42].

Next, we turn to our numerical results, starting with a

typical initial state |ψ(0)〉, i.e., the case of random ck . For

a single realization of this state, we summarize in Fig. 1 the

resulting expectation value pr (t) in a two-dimensional (2D)

time-space density plot for different anisotropies, � = 1.5,
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18r

(c) ∆ = 0.5

FIG. 1. Time-space density plot of occupation numbers pr (t) for

a typical initial state |ψ(0)〉 in the XXZ spin-1/2 chain with L = 36

sites and different anisotropies: (a) � = 1.5, (b) � = 1.0, (c) � =
0.5. The broadening in (a) is consistent with a diffusive process, while

the broadening in (c) is ballistic.

1.0, 0.5, and a large system with L = 36 sites. Several

comments are in order. First, for all values of � shown, the

initial δ peak monotonously broadens as a function of time

and the nonequilibrium density profiles have the irreversible

tendency to equilibrate. Such equilibration is nontrivial in

view of our isolated and integrable model. Second, for times

below the maximum tJ = 20 depicted, the spatial extension

of the density profiles is still smaller than the length of the

chain. Thus, unwanted boundary effects do not emerge for

such times. Third, the broadening of the density profiles is

faster for smaller values of � because the scattering due to

particle interactions decreases as � decreases. Moreover, for

the small � = 0.5 in Fig. 1(c), the width of the density profile

clearly increases linearly as a function of time. This linear

increase is the expected ballistic dynamics arising from partial

conservation of the spin current. In contrast, for the larger

� = 1.5 and 1.0 in Figs. 1(a) and 1(b), the width of the density

profiles does not increase linearly and is rather reminiscent of

a square-root behavior. However, such a conclusion is not

possible on the basis of a density plot.

To gain insight into the dynamics at � = 1.5, we depict in

Fig. 2(a) the site dependence of the expectation values pr (t) at

fixed times tJ = 0, 5, 10, and 20. Conveniently, we subtract

the equilibrium value peq and use a semilogarithmic plot to

also visualize the tails of the density profiles. As illustrated by

fits, the site dependence can be described by Gaussians [with

σf(t) as the only fit parameter],

pr (t) − peq =
1

2

1
√

2π σf(t)
exp

[

−
(r − L/2)2

2 σf(t)2

]

, (7)

and, remarkably, over several orders of magnitude. Such a

pronounced Gaussian form of the density profiles is the second

main result of our paper. This result unveils that the standard

deviation σf(t) is not just a width but also the only parameter

required to describe the full site dependence. Furthermore, the

10−5

10−4

10−3

10−2

10−1

1 36

tJ = 5, 10, 20
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)
−

p
e
q
.

r
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D
(t
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J
,
σ
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D(t)/J
σ(t)

(b) LR

FIG. 2. (a) Density profile pr (t) with respect to site r at fixed

times tJ = 0, 5, 10, 20 for a single anisotropy � = 1.5 (and the

parameters in Fig. 1), shown in a semilogarithmic plot (symbols).

The indicated Gaussian fits describe the data very well over several

orders of magnitude (curves). (b) Time dependence of diffusion

coefficient D(t) and profile width σ (t) according to linear response

theory, calculated in Ref. [31] for the same anisotropy � = 1.5 and

L = 34 sites (curves). For comparison, the standard deviation σ (t) of

the Gaussian fits in (a) is depicted (symbols).

Gaussian form is one of the clearest signatures of diffusion so

far. Still, diffusion requires that σf(t) scales as σf(t) ∝
√

t .

To further judge on diffusion, we show in Fig. 2(b) the

standard deviation σf(t), as resulting from the Gaussian fits

in Fig. 2(a). We further depict linear response results for

σ (t) in Eq. (5) and the underlying D(t) in Eq. (6), as

calculated in Ref. [31] for L = 34 ∼ 36. On the one hand,

the excellent agreement shows the very high accuracy of the

typicality relation in Eq. (3). On the other hand, this agreement

demonstrates that the known linear response result σ (t) ∝
√

t ,

resulting from D(t) ≈ const at such t [31,38,39], also holds

for our nonequilibrium density dynamics. Hence, together with

the Gaussian form, we can conclude that diffusion exists.

An analogous analysis for the isotropic point � = 1.0 in

Fig. 3(a) shows that simple Gaussians are not able to describe

the tails of the density profiles accurately. This is why the

standard deviation σf(t) of the corresponding fits slightly

deviates from the linear response result in Fig. 3(b). But these

deviations disappear if σ (t) is calculated exactly according to

Eq. (4). Most notably, however, the time dependence of σ (t)

is inconsistent with diffusion, as can be seen most easily from

the nonconstant D(t). In fact, σ (t) points to superdiffusion

[37,40], contrary to [46].

Now, we turn to the untypical initial state |ψ(0)〉, i.e., the

case of equal ck . Recall that for this state, we obtain the same

initial density profile but the relations in Eqs. (3) and (5) do not

need to hold. In Fig. 4, we summarize the resulting expectation

values pr (t) in a 2D time-space density plot again. Compared

to Fig. 1, the broadening turns out to be clearly different.

The dynamics is frozen for � = 1.5 in Fig. 4(a) and features

pronounced jets for � = 0.5 in Fig. 4(c). In particular, we

do not find obvious indications of equilibration, at least for

all times considered. These observations constitute the third
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FIG. 3. The same data as depicted in Fig. 1 but now for the

anisotropy � = 1.0. In (a) the Gaussian fits cannot describe the tails

of the density profiles accurately. In (b) the standard deviation of

these fits (open symbols) and, according to Eq. (4) (closed symbols),

still agrees with the linear response; however, the time dependence

is clearly inconsistent with diffusion. Note that finite-size effects are

negligibly small; see Appendix D.

main result of our paper. This result suggests that the lack

of internal randomness in the initial condition is essential for

the observation of nonequilibrium dynamics beyond linear

response theory.

Finally, let us briefly mention another property of the

untypical initial state |ψ(0)〉, which could be responsible for

the special dynamics found. This property is the lack of

entanglement. In fact, it is easy to see that |ψ(0)〉 can be

written as the product state,

|ψ(0)〉 ∝ · · · (|↑〉 + |↓〉) ⊗ |↑〉 ⊗ (|↑〉 + |↓〉) · · · , (8)

1

18r

pr(t)

1

18r

0.5

1

0 10 20

tJ

1

18r

FIG. 4. Time-space density plot of occupation numbers pr (t) for

another and untypical initial state |ψ(0)〉 in the XXZ spin-1/2 chain

with L = 36 sites and different anisotropies: (a) � = 1.5, (b) � =
1.0, (c) � = 0.5. Compared to Fig. 1, the dynamics is frozen in (a),

similar to [33], and features pronounced jets in (c).

with a spin-up state |↑〉 in the middle of the chain and a

spin-up/spin-down superposition |↑〉 + |↓〉 at all other sites.

By definition, such a product state is not entangled at all. In

clear contrast, the typical initial state cannot be written as a

product state.

V. CONCLUSIONS

In this paper, we have investigated the real-time broadening

of nonequilibrium density profiles in the spin-1/2 XXZ chain.

First, we have introduced a class of pure initial states with

identical density profiles where a maximum δ peak is located

in the middle of the chain. Then, we have shown for a subclass

with internal randomness that the resulting nonequilibrium dy-

namics can be connected to equilibrium correlation functions

via the concept of typicality. This analytical result has also been

verified by large-scale numerical simulations. These numerical

simulations have further unveiled the existence of diffusion

for large exchange anisotropies, as one of our key results.

Finally, we have demonstrated that entirely different behavior

emerges without any randomness in the initial state. Promising

future directions of research include the identification of

typical and untypical initial states in nonintegrable models,

in many-body localized phases, and at low temperatures, as

well as a systematic analysis of the role of entanglement.
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APPENDIX A: HALF-FILLING SECTOR

To demonstrate that our results do not depend on our

specific choice of 〈Sz〉 = 0, we do the calculation in, e.g.,

Fig. 4 again for the half-filling sector Sz = 0. We depict

the corresponding results in Fig. 5. It is clearly visible that

the real-time broadening of the expectation values pr (t) is

practically the same, apart from minor details related to

peq ≈ 1/2 in the half-filling case.

APPENDIX B: TYPICALITY APPROXIMATION

Here, we provide details on the calculation leading to the

relation in Eq. (3) of the main text. By carrying out the

multiplication of the two brackets in the correlation function,

C(t) = 2 〈(nL/2 − peq)(nr (t) − peq)〉 + peq, (B1)

and applying 〈nr (t)〉 = peq, we obtain

C(t) = 2 〈nL/2 nr (t)〉 = 2
tr[nL/2 nr (t)]

2L
. (B2)

Using n2
L/2 = nL/2 and a cyclic permutation in the trace,

we get

C(t) = 2
tr[nL/2 nr (t) nL/2]

2L
. (B3)
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FIG. 5. The same data as shown in Fig. 4, but now for the half-

filling sector Sz = 0.

Exploiting the typicality of the pure state |�〉, the correlation

function can be rewritten as

C(t) = 2
〈�| nL/2 nr (t) nL/2 |�〉

〈�|�〉
+ ǫ, (B4)

with the small error ǫ ∝ 2−L/2. Due to n
†
L/2 = nL/2, this

expression becomes

C(t) = 2
〈nL/2 �| nr (t) |nL/2 �〉

〈�|�〉
+ ǫ, (B5)

and, due to nr (t) = eıH t nr e−ıH t , it reads

C(t) =
〈e−ıH t nL/2 �| nr |e−ıH t nL/2 �〉

〈�|�〉/2
+ ǫ, (B6)

where we have moved, in addition, the factor 2 from the front

to the denominator. Finally, due to the definition of |ψ(0)〉, we

can write

C(t) = 〈ψ(t)| nr |ψ(t)〉 + ǫ = pr (t) + ǫ. (B7)

Therefore, comparing Eqs. (B1) and (B7) and skipping the

small error ǫ for clarity yields

pr (t) − peq = 2 〈(nL/2 − peq)(nr (t) − peq)〉. (B8)

APPENDIX C: SPECIFIC TYPE OF RANDOMNESS

As stated in the main text, the relations in Eqs. (3) and (5)

have to be understood for typical states |�〉 drawn at random

according to the unitary invariant Haar measure (where the

real and imaginary parts of the ck are drawn from a Gaussian

distribution with zero mean). However, it is instructive to

consider other types of randomness. Thus, we choose

ck ∝ eı αk , (C1)

with constant amplitudes |ck|2 and random phases αk drawn

from a uniform distribution [0,2π ]. In Figs. 6(a) and 6(b), we

1

15r

pr(t)

1

15r

0.5

1

0 10 20

tJ

1

15r

FIG. 6. Time-space density plot of occupation numbers pr (t) in

the spin-1/2 XXZ chain with L = 30 sites and a single anisotropy

� = 1.5 for three different types of randomness in the pure initial

state: (a) random amplitudes, (b) random phases, (c) random product

state. See text for the detailed definitions.

compare the resulting real-time broadening of the expectation

values pr (t) for this and the previous choice of the ck , where we

focus on a single anisotropy � = 1.5 and restrict ourselves to

a chain length L = 30 to reduce computational effort. The

excellent agreement demonstrates that the specific type of

randomness does not matter. Moreover, constant amplitudes

|ck|2 as such are not responsible for the untypical dynamics

observed in Fig. 4.

Note that not any kind of randomness can yield the same

dynamical behavior. To illustrate this fact, let us randomize

the product state in Eq. (8) of the main text in the following

way: At all sites r �= L/2, we replace the spin-up/spin-down

superposition |↑〉 + |↓〉 by

eı αr |↑〉 + eı βr |↓〉, (C2)

10−5

10−4

10−3

10−2

10−1

10−5

10−4

10−3

10−2

10−1

L/2

p
r
(t

)
−

p
e
q
. ∆ = 1.5

p
r
(t

)
−

p
e
q
. ∆ = 1.0

FIG. 7. Density profile pr (t) with respect to site r at a single time

tJ = 10 for the two system sizes L = 30 and L = 36 and for the two

anisotropies (a) � = 1.5 and (b) � = 1.0 (symbols). Gaussian fits

are indicated for comparison (curves).
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with site-dependent phases αr , βr drawn from a uniform

distribution [0,2π ]. This randomized product state has still

pr �=L/2(0) = 1/2 and pL/2(0) = 1. It involves only 2(L − 1)

random numbers, in contrast to the state from the Haar measure

with 2L random numbers. In Fig. 6(c), we depict the resulting

dynamics of the expectation values pr (t). Compared to the

two other random cases in Figs. 6(a) and 6(b), the dynamical

behavior turns out to be very different. This difference suggests

again that the lack of entanglement could be the source of

untypical dynamics.

APPENDIX D: FINITE-SIZE EFFECTS

Eventually, we show that our numerical results for the real-

time broadening of the expectation values pr (t) are free of

significant finite-size effects. To this end, we redo the t J =
10 calculations in Figs. 2(a) and 3(a) for a smaller but still

large system size L = 30. In Fig. 7, we depict the results of

these calculations, together with the previous L = 36 data. It is

clearly visible that finite-size effects are negligibly small and

are not responsible for the non-Gaussian tails at the isotropic

point � = 1.0.
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