000827608 001__ 827608
000827608 005__ 20240712084458.0
000827608 0247_ $$2Handle$$a2128/13844
000827608 037__ $$aFZJ-2017-01727
000827608 041__ $$aEnglish
000827608 1001_ $$0P:(DE-Juel1)168198$$aLiu, Yong$$b0$$eCorresponding author
000827608 1112_ $$a9th international conference on Hot Wire (Cat) and Initiated Chemical Vapor Deposition$$cPhiladelphia$$d2016-09-06 - 2016-09-09$$gHWCVD9$$wUSA
000827608 245__ $$aPost-deposition Catalytic-doping of Microcrystalline Silicon Thin-layer for the Application in Silicon Heterojunction Solar Cell
000827608 260__ $$c2016
000827608 3367_ $$033$$2EndNote$$aConference Paper
000827608 3367_ $$2DataCite$$aOther
000827608 3367_ $$2BibTeX$$aINPROCEEDINGS
000827608 3367_ $$2DRIVER$$aconferenceObject
000827608 3367_ $$2ORCID$$aLECTURE_SPEECH
000827608 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1486722691_15401$$xOther
000827608 520__ $$aSilicon heterojunction (SHJ) solar cell is one of the most promising candidates for the next-generation high-efficiency (>25%) mainstream photovoltaic technology. It consists of a crystalline silicon wafer coated with a stack of functional thin-films on both sides. Conventionally, intrinsic and doped amorphous silicon (a-Si:H) is used as the passivation layer and emitter or back surface field (BSF), respectively. Doped microcrystalline silicon (µc-Si:H) is considered a more advantageous alternative to the amorphous emitter and BSF layers due to higher electrical conductivity giving rise to lower series and contact resistance. In this contribution, we use the so called “Cat-doping” process, in which the doping is achieved by the radicals decomposed at the hot catalyzer surface, to actively dope µc-Si:H thin-layers, in order to reach conductivity values higher than those achievable in as-grown doped µc-Si:H for the application in SHJ solar cells. We show that the conductivity of the µc-Si:H films notably increased after the Cat-doping, which confirms that it is possible to dope µc-Si:H using Cat-doping. We systematically investigated the impact of (i) the Cat-doping process parameters e.g. wire temperature and gas composition as well as (ii) the µc-Si:H microstructure e.g. the crystalline volume fraction on the effectiveness of the Cat-doping process in terms of conductivity increase. In addition, the (positive and negative) effects of the Cat-doping on the passivation quality of the underlying intrinsic a-Si:H layer will be analyzed.
000827608 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000827608 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000827608 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000827608 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
000827608 7001_ $$0P:(DE-Juel1)167158$$aKim, Do Yun$$b1
000827608 7001_ $$0P:(DE-Juel1)162141$$aPomaska, Manuel$$b2
000827608 7001_ $$0P:(DE-Juel1)159306$$aAugarten, Yael$$b3
000827608 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b4
000827608 7001_ $$0P:(DE-Juel1)130795$$aLentz, Florian$$b5
000827608 7001_ $$0P:(DE-Juel1)159388$$aMock, Jan$$b6
000827608 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b7
000827608 8564_ $$uhttps://juser.fz-juelich.de/record/827608/files/HWCVD9_FZJ_Yong%20Liu.pdf$$yOpenAccess
000827608 8564_ $$uhttps://juser.fz-juelich.de/record/827608/files/HWCVD9_FZJ_Yong%20Liu.gif?subformat=icon$$xicon$$yOpenAccess
000827608 8564_ $$uhttps://juser.fz-juelich.de/record/827608/files/HWCVD9_FZJ_Yong%20Liu.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827608 8564_ $$uhttps://juser.fz-juelich.de/record/827608/files/HWCVD9_FZJ_Yong%20Liu.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827608 8564_ $$uhttps://juser.fz-juelich.de/record/827608/files/HWCVD9_FZJ_Yong%20Liu.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827608 8564_ $$uhttps://juser.fz-juelich.de/record/827608/files/HWCVD9_FZJ_Yong%20Liu.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827608 909CO $$ooai:juser.fz-juelich.de:827608$$pdriver$$pVDB$$popen_access$$popenaire
000827608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168198$$aForschungszentrum Jülich$$b0$$kFZJ
000827608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167158$$aForschungszentrum Jülich$$b1$$kFZJ
000827608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162141$$aForschungszentrum Jülich$$b2$$kFZJ
000827608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159306$$aForschungszentrum Jülich$$b3$$kFZJ
000827608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich$$b4$$kFZJ
000827608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130795$$aForschungszentrum Jülich$$b5$$kFZJ
000827608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159388$$aForschungszentrum Jülich$$b6$$kFZJ
000827608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b7$$kFZJ
000827608 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000827608 9141_ $$y2016
000827608 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827608 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000827608 9801_ $$aFullTexts
000827608 980__ $$aconf
000827608 980__ $$aVDB
000827608 980__ $$aUNRESTRICTED
000827608 980__ $$aI:(DE-Juel1)IEK-5-20101013
000827608 981__ $$aI:(DE-Juel1)IMD-3-20101013