001     827608
005     20240712084458.0
024 7 _ |a 2128/13844
|2 Handle
037 _ _ |a FZJ-2017-01727
041 _ _ |a English
100 1 _ |a Liu, Yong
|0 P:(DE-Juel1)168198
|b 0
|e Corresponding author
111 2 _ |a 9th international conference on Hot Wire (Cat) and Initiated Chemical Vapor Deposition
|g HWCVD9
|c Philadelphia
|d 2016-09-06 - 2016-09-09
|w USA
245 _ _ |a Post-deposition Catalytic-doping of Microcrystalline Silicon Thin-layer for the Application in Silicon Heterojunction Solar Cell
260 _ _ |c 2016
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1486722691_15401
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Silicon heterojunction (SHJ) solar cell is one of the most promising candidates for the next-generation high-efficiency (>25%) mainstream photovoltaic technology. It consists of a crystalline silicon wafer coated with a stack of functional thin-films on both sides. Conventionally, intrinsic and doped amorphous silicon (a-Si:H) is used as the passivation layer and emitter or back surface field (BSF), respectively. Doped microcrystalline silicon (µc-Si:H) is considered a more advantageous alternative to the amorphous emitter and BSF layers due to higher electrical conductivity giving rise to lower series and contact resistance. In this contribution, we use the so called “Cat-doping” process, in which the doping is achieved by the radicals decomposed at the hot catalyzer surface, to actively dope µc-Si:H thin-layers, in order to reach conductivity values higher than those achievable in as-grown doped µc-Si:H for the application in SHJ solar cells. We show that the conductivity of the µc-Si:H films notably increased after the Cat-doping, which confirms that it is possible to dope µc-Si:H using Cat-doping. We systematically investigated the impact of (i) the Cat-doping process parameters e.g. wire temperature and gas composition as well as (ii) the µc-Si:H microstructure e.g. the crystalline volume fraction on the effectiveness of the Cat-doping process in terms of conductivity increase. In addition, the (positive and negative) effects of the Cat-doping on the passivation quality of the underlying intrinsic a-Si:H layer will be analyzed.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 1
700 1 _ |a Kim, Do Yun
|0 P:(DE-Juel1)167158
|b 1
700 1 _ |a Pomaska, Manuel
|0 P:(DE-Juel1)162141
|b 2
700 1 _ |a Augarten, Yael
|0 P:(DE-Juel1)159306
|b 3
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 4
700 1 _ |a Lentz, Florian
|0 P:(DE-Juel1)130795
|b 5
700 1 _ |a Mock, Jan
|0 P:(DE-Juel1)159388
|b 6
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 7
856 4 _ |u https://juser.fz-juelich.de/record/827608/files/HWCVD9_FZJ_Yong%20Liu.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827608/files/HWCVD9_FZJ_Yong%20Liu.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827608/files/HWCVD9_FZJ_Yong%20Liu.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827608/files/HWCVD9_FZJ_Yong%20Liu.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827608/files/HWCVD9_FZJ_Yong%20Liu.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/827608/files/HWCVD9_FZJ_Yong%20Liu.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:827608
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168198
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159306
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130795
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)159388
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21