Home > Publications database > Macropore effects on phosphorus acquisition by wheat roots – a rhizotron study > print |
001 | 827625 | ||
005 | 20210129225901.0 | ||
024 | 7 | _ | |a 10.1007/s11104-017-3194-0 |2 doi |
024 | 7 | _ | |a 0032-079X |2 ISSN |
024 | 7 | _ | |a 1573-5036 |2 ISSN |
024 | 7 | _ | |a WOS:000405916400006 |2 WOS |
024 | 7 | _ | |a altmetric:16135239 |2 altmetric |
037 | _ | _ | |a FZJ-2017-01739 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Bauke, S. L. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Macropore effects on phosphorus acquisition by wheat roots – a rhizotron study |
260 | _ | _ | |a Dordrecht [u.a.] |c 2017 |b Springer Science + Business Media B.V |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1500617954_11786 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Background and aimsMacropores may be preferential root pathways into the subsoil. We hypothesised that the presence of macropores promotes P-uptake from subsoil, particularly at limited water supply in surface soil. We tested this hypothesis in a rhizotron experiment with spring wheat (Triticum aestivum cv. Scirocco) under variation of fertilisation and irrigation.MethodsRhizotrons were filled with compacted subsoil (bulk density 1.4 g cm−3), underneath a P-depleted topsoil. In half of these rhizotrons the subsoil contained artificial macropores. Spring wheat was grown for 41 days with and without irrigation and 31P–addition. Also, a 33P–tracer was added at the soil surface to trace P-distribution in plants using liquid scintillation counting and radioactive imaging.ResultsFertilisation and irrigation promoted biomass production and plant P-uptake. Improved growing conditions resulted in a higher proportion of subsoil roots, indicating that the topsoil root system additionally promoted subsoil nutrient acquisition. The presence of macropores did not improve plant growth but tended to increase translocation of 33P into both above- and belowground biomass. 33P–imaging confirmed that this plant-internal transport of topsoil-P extended into subsoil roots.ConclusionsThe lack of penetration resistance in macropores did not increase plant growth and nutrient uptake from subsoil here; however, wheat specifically re-allocated topsoil-P for subsoil root growth. |
536 | _ | _ | |a 582 - Plant Science (POF3-582) |0 G:(DE-HGF)POF3-582 |c POF3-582 |f POF III |x 0 |
536 | _ | _ | |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) |0 G:(DE-HGF)POF3-255 |c POF3-255 |f POF III |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Landl, M. |0 P:(DE-Juel1)165987 |b 1 |u fzj |
700 | 1 | _ | |a Koch, M. |0 P:(DE-Juel1)166452 |b 2 |u fzj |
700 | 1 | _ | |a Hofmann, D. |0 P:(DE-Juel1)129471 |b 3 |u fzj |
700 | 1 | _ | |a Nagel, Kerstin |0 P:(DE-Juel1)129373 |b 4 |u fzj |
700 | 1 | _ | |a Siebers, N. |0 P:(DE-Juel1)164361 |b 5 |u fzj |
700 | 1 | _ | |a Schnepf, A. |0 P:(DE-Juel1)157922 |b 6 |u fzj |
700 | 1 | _ | |a Amelung, W. |0 P:(DE-Juel1)129427 |b 7 |u fzj |
773 | _ | _ | |a 10.1007/s11104-017-3194-0 |0 PERI:(DE-600)1478535-3 |n 1-2 |p 67–82 |t Plant and soil |v 416 |y 2017 |x 1573-5036 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827625/files/10.1007_s11104-017-3194-0.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827625/files/10.1007_s11104-017-3194-0.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827625/files/10.1007_s11104-017-3194-0.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827625/files/10.1007_s11104-017-3194-0.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827625/files/10.1007_s11104-017-3194-0.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827625/files/10.1007_s11104-017-3194-0.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:827625 |p VDB |p VDB:Earth_Environment |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)165987 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)166452 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129471 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129373 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)164361 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)157922 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129427 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-582 |2 G:(DE-HGF)POF3-500 |v Plant Science |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |l Terrestrische Umwelt |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-255 |2 G:(DE-HGF)POF3-200 |v Terrestrial Systems: From Observation to Prediction |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLANT SOIL : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|