000827656 001__ 827656
000827656 005__ 20220930130117.0
000827656 0247_ $$2doi$$a10.1093/cercor/bhw243
000827656 0247_ $$2ISSN$$a1047-3211
000827656 0247_ $$2ISSN$$a1460-2199
000827656 0247_ $$2pmid$$apmid:27522071
000827656 0247_ $$2WOS$$aWOS:000407847800010
000827656 0247_ $$2altmetric$$aaltmetric:10535042
000827656 037__ $$aFZJ-2017-01770
000827656 082__ $$a610
000827656 1001_ $$0P:(DE-Juel1)131702$$aQi, Guanxiao$$b0$$eCorresponding author$$ufzj
000827656 245__ $$aAdenosine Differentially Modulates Synaptic Transmission of Excitatory and Inhibitory Microcircuits in Layer 4 of Rat Barrel Cortex
000827656 260__ $$aOxford$$bOxford Univ. Press$$c2017
000827656 3367_ $$2DRIVER$$aarticle
000827656 3367_ $$2DataCite$$aOutput Types/Journal article
000827656 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1539669391_21384
000827656 3367_ $$2BibTeX$$aARTICLE
000827656 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827656 3367_ $$00$$2EndNote$$aJournal Article
000827656 520__ $$aAdenosine is considered to be a key regulator of sleep homeostasis by promoting slow-wave sleep through inhibition of the brain's arousal centers. However, little is known about the effect of adenosine on neuronal network activity at the cellular level in the neocortex. Here, we show that adenosine differentially modulates synaptic transmission between different types of neurons in cortical layer 4 (L4) through activation of pre- and/or postsynaptically located adenosine A1 receptors. In recurrent excitatory connections between L4 spiny neurons, adenosine suppresses synaptic transmission through activation of both pre- and postsynaptic A1 receptors. In reciprocal excitatory and inhibitory connections between L4 spiny neurons and interneurons, adenosine strongly suppresses excitatory transmission via activating presynaptic A1 receptors but only slightly suppresses inhibitory transmission via activating postsynaptic A1 receptors. Adenosine has no effect on inhibitory transmission between L4 interneurons. The effect of adenosine is concentration dependent and first visible at a concentration of 1 μM. The effect of adenosine is blocked by the specific A1 receptor antagonist, 8-cyclopentyltheophylline or the nonspecific adenosine receptor antagonist, caffeine. By differentially affecting excitatory and inhibitory synaptic transmission, adenosine changes the excitation–inhibition balance and causes an overall shift to lower excitability in L4 primary somatosensory (barrel) cortical microcircuits.
000827656 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000827656 588__ $$aDataset connected to CrossRef
000827656 7001_ $$0P:(DE-Juel1)131715$$avan Aerde, Karlijn$$b1
000827656 7001_ $$0P:(DE-HGF)0$$aAbel, Ted$$b2
000827656 7001_ $$0P:(DE-Juel1)131680$$aFeldmeyer, Dirk$$b3$$ufzj
000827656 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhw243$$gp. cercor;bhw243v1$$n9$$p4411–4422$$tCerebral cortex$$v27$$x1460-2199$$y2017
000827656 8564_ $$uhttps://juser.fz-juelich.de/record/827656/files/INM-10_Adenosine%20Differentially%20Modulates%20Synaptic.pdf$$yRestricted
000827656 8564_ $$uhttps://juser.fz-juelich.de/record/827656/files/INM-10_Adenosine%20Differentially%20Modulates%20Synaptic.pdf?subformat=pdfa$$xpdfa$$yRestricted
000827656 8767_ $$92016-09-14$$d2016-10-24$$ePage charges$$jZahlung erfolgt$$pbhw243
000827656 909CO $$ooai:juser.fz-juelich.de:827656$$pOpenAPC$$pVDB$$popenCost
000827656 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131702$$aForschungszentrum Jülich$$b0$$kFZJ
000827656 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131680$$aForschungszentrum Jülich$$b3$$kFZJ
000827656 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000827656 9141_ $$y2018
000827656 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000827656 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000827656 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2015
000827656 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827656 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827656 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000827656 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827656 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000827656 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827656 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827656 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000827656 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000827656 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCEREB CORTEX : 2015
000827656 920__ $$lyes
000827656 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000827656 980__ $$ajournal
000827656 980__ $$aVDB
000827656 980__ $$aI:(DE-Juel1)INM-2-20090406
000827656 980__ $$aAPC
000827656 980__ $$aUNRESTRICTED
000827656 9801_ $$aAPC