000827705 001__ 827705
000827705 005__ 20240712112816.0
000827705 0247_ $$2doi$$a10.1039/C6TA09146F
000827705 0247_ $$2ISSN$$a2050-7488
000827705 0247_ $$2ISSN$$a2050-7496
000827705 0247_ $$2WOS$$aWOS:000395072800011
000827705 037__ $$aFZJ-2017-01817
000827705 041__ $$aEnglish
000827705 082__ $$a540
000827705 1001_ $$0P:(DE-HGF)0$$aChen, Chunguang$$b0
000827705 245__ $$aCarbon-coated core–shell Li 2 S@C nanocomposites as high performance cathode materials for lithium–sulfur batteries
000827705 260__ $$aLondon [u.a.]$$bRSC$$c2017
000827705 3367_ $$2DRIVER$$aarticle
000827705 3367_ $$2DataCite$$aOutput Types/Journal article
000827705 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1486989573_16604
000827705 3367_ $$2BibTeX$$aARTICLE
000827705 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827705 3367_ $$00$$2EndNote$$aJournal Article
000827705 520__ $$aLi2S has made the concept of Li–S batteries much more promising due to the relatively high storage capacity, the possibility of using Li-free anodes and the increase of microstructural stability. However, similar to S, Li2S also suffers from an insulating nature and polysulfide dissolution problem. The results presented here show a facile and cost-effective approach by using a plasma sparking and chemical sulfurization process to synthesize core–shell Li2S@C nanocomposites. The nanocomposites show a significantly reduced particle size and well-developed core–shell architecture, effectively shortening the Li-ion diffusion distance, enhancing the electronic conductivity and suppressing the dissolution losses of polysulfides. As a result, a much improved rate and cycling performance has been achieved. The method presented in this study offers good opportunities for scaling up the production of high performance cathode materials in a simple and low-cost way to be applied in future generation Li–S batteries.
000827705 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000827705 588__ $$aDataset connected to CrossRef
000827705 7001_ $$0P:(DE-HGF)0$$aLi, Dongjiang$$b1
000827705 7001_ $$0P:(DE-HGF)0$$aGao, Lu$$b2
000827705 7001_ $$0P:(DE-HGF)0$$aHarks, Peter Paul R. M. L.$$b3
000827705 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4$$ufzj
000827705 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b5$$eCorresponding author$$ufzj
000827705 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/C6TA09146F$$gVol. 5, no. 4, p. 1428 - 1433$$n4$$p1428 - 1433$$tJournal of materials chemistry / A$$v5$$x2050-7496$$y2017
000827705 8564_ $$uhttps://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.pdf$$yRestricted
000827705 8564_ $$uhttps://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.gif?subformat=icon$$xicon$$yRestricted
000827705 8564_ $$uhttps://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000827705 8564_ $$uhttps://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.jpg?subformat=icon-180$$xicon-180$$yRestricted
000827705 8564_ $$uhttps://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.jpg?subformat=icon-640$$xicon-640$$yRestricted
000827705 8564_ $$uhttps://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000827705 909CO $$ooai:juser.fz-juelich.de:827705$$pVDB
000827705 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
000827705 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
000827705 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b5$$kFZJ
000827705 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000827705 9141_ $$y2017
000827705 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000827705 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827705 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2015
000827705 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827705 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827705 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000827705 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827705 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827705 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000827705 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000827705 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM A : 2015
000827705 920__ $$lyes
000827705 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000827705 980__ $$ajournal
000827705 980__ $$aVDB
000827705 980__ $$aI:(DE-Juel1)IEK-9-20110218
000827705 980__ $$aUNRESTRICTED
000827705 981__ $$aI:(DE-Juel1)IET-1-20110218