001     827705
005     20240712112816.0
024 7 _ |a 10.1039/C6TA09146F
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a WOS:000395072800011
|2 WOS
037 _ _ |a FZJ-2017-01817
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Chen, Chunguang
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Carbon-coated core–shell Li 2 S@C nanocomposites as high performance cathode materials for lithium–sulfur batteries
260 _ _ |a London [u.a.]
|c 2017
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1486989573_16604
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Li2S has made the concept of Li–S batteries much more promising due to the relatively high storage capacity, the possibility of using Li-free anodes and the increase of microstructural stability. However, similar to S, Li2S also suffers from an insulating nature and polysulfide dissolution problem. The results presented here show a facile and cost-effective approach by using a plasma sparking and chemical sulfurization process to synthesize core–shell Li2S@C nanocomposites. The nanocomposites show a significantly reduced particle size and well-developed core–shell architecture, effectively shortening the Li-ion diffusion distance, enhancing the electronic conductivity and suppressing the dissolution losses of polysulfides. As a result, a much improved rate and cycling performance has been achieved. The method presented in this study offers good opportunities for scaling up the production of high performance cathode materials in a simple and low-cost way to be applied in future generation Li–S batteries.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Li, Dongjiang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gao, Lu
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Harks, Peter Paul R. M. L.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 4
|u fzj
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1039/C6TA09146F
|g Vol. 5, no. 4, p. 1428 - 1433
|0 PERI:(DE-600)2702232-8
|n 4
|p 1428 - 1433
|t Journal of materials chemistry / A
|v 5
|y 2017
|x 2050-7496
856 4 _ |u https://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:827705
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165918
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MATER CHEM A : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21