Home > Publications database > Carbon-coated core–shell Li 2 S@C nanocomposites as high performance cathode materials for lithium–sulfur batteries > print |
001 | 827705 | ||
005 | 20240712112816.0 | ||
024 | 7 | _ | |a 10.1039/C6TA09146F |2 doi |
024 | 7 | _ | |a 2050-7488 |2 ISSN |
024 | 7 | _ | |a 2050-7496 |2 ISSN |
024 | 7 | _ | |a WOS:000395072800011 |2 WOS |
037 | _ | _ | |a FZJ-2017-01817 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Chen, Chunguang |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Carbon-coated core–shell Li 2 S@C nanocomposites as high performance cathode materials for lithium–sulfur batteries |
260 | _ | _ | |a London [u.a.] |c 2017 |b RSC |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1486989573_16604 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Li2S has made the concept of Li–S batteries much more promising due to the relatively high storage capacity, the possibility of using Li-free anodes and the increase of microstructural stability. However, similar to S, Li2S also suffers from an insulating nature and polysulfide dissolution problem. The results presented here show a facile and cost-effective approach by using a plasma sparking and chemical sulfurization process to synthesize core–shell Li2S@C nanocomposites. The nanocomposites show a significantly reduced particle size and well-developed core–shell architecture, effectively shortening the Li-ion diffusion distance, enhancing the electronic conductivity and suppressing the dissolution losses of polysulfides. As a result, a much improved rate and cycling performance has been achieved. The method presented in this study offers good opportunities for scaling up the production of high performance cathode materials in a simple and low-cost way to be applied in future generation Li–S batteries. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Li, Dongjiang |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Gao, Lu |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Harks, Peter Paul R. M. L. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 4 |u fzj |
700 | 1 | _ | |a Notten, Peter H. L. |0 P:(DE-Juel1)165918 |b 5 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1039/C6TA09146F |g Vol. 5, no. 4, p. 1428 - 1433 |0 PERI:(DE-600)2702232-8 |n 4 |p 1428 - 1433 |t Journal of materials chemistry / A |v 5 |y 2017 |x 2050-7496 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827705/files/c6ta09146f-1.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:827705 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)165918 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MATER CHEM A : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J MATER CHEM A : 2015 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|