| 001 | 827713 | ||
| 005 | 20210129225913.0 | ||
| 024 | 7 | _ | |a 10.1063/1.4946004 |2 doi |
| 024 | 7 | _ | |a 0021-9606 |2 ISSN |
| 024 | 7 | _ | |a 1089-7690 |2 ISSN |
| 024 | 7 | _ | |a WOS:000375786000040 |2 WOS |
| 024 | 7 | _ | |a 2128/18965 |2 Handle |
| 037 | _ | _ | |a FZJ-2017-01821 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Goracci, G. |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Structure and component dynamics in binary mixtures of poly(2-(dimethylamino)ethyl methacrylate) with water and tetrahydrofuran: A diffraction, calorimetric, and dielectric spectroscopy study |
| 260 | _ | _ | |a Melville, NY |c 2016 |b American Institute of Physics |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1487084885_26733 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a We have combined X-ray diffraction, neutron diffraction with polarization analysis, small angle neutron scattering, differential scanning calorimetry, and broad band dielectric spectroscopy to investigate the structure and dynamics of binary mixtures of poly(2-(dimethylamino)ethyl methacrylate) with either water or tetrahydrofuran (THF) at different concentrations. Aqueous mixtures are characterized by a highly heterogeneous structure where water clusters coexist with an underlying nano-segregation of main chains and side groups of the polymeric matrix. THF molecules are homogeneously distributed among the polymeric nano-domains for concentrations of one THF molecule/monomer or lower. A more heterogeneous situation is found for higher THF amounts, but without evidences for solvent clusters. In THF-mixtures, we observe a remarkable reduction of the glass-transition temperature which is enhanced with increasing amount of solvent but seems to reach saturation at high THF concentrations. Adding THF markedly reduces the activation energy of the polymer β-relaxation. The presence of THF molecules seemingly hinders a slow component of this process which is active in the dry state. The aqueous mixtures present a strikingly broad glass-transition feature, revealing a highly heterogeneous behavior in agreement with the structural study. Regarding the solvent dynamics, deep in the glassy state all data can be described by an Arrhenius temperature dependence with a rather similar activation energy. However, the values of the characteristic times are about three orders of magnitude smaller for THF than for water. Water dynamics display a crossover toward increasingly higher apparent activation energies in the region of the onset of the glass transition, supporting its interpretation as a consequence of the freezing of the structural relaxation of the surrounding matrix. The absence of such a crossover (at least in the wide dynamic window here accessed) in THF is attributed to the lack of cooperativity effects in the relaxation of these molecules within the polymeric matrix. |
| 536 | _ | _ | |0 G:(DE-HGF)POF3-6G15 |f POF III |x 0 |c POF3-6G15 |a 6G15 - FRM II / MLZ (POF3-6G15) |
| 536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 650 | 2 | 7 | |a Soft Condensed Matter |0 V:(DE-MLZ)SciArea-210 |2 V:(DE-HGF) |x 0 |
| 650 | 1 | 7 | |a Polymers, Soft Nano Particles and Proteins |0 V:(DE-MLZ)GC-1602-2016 |2 V:(DE-HGF) |x 0 |
| 693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e DNS: Diffuse scattering neutron time of flight spectrometer |f NL6S |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)DNS-20140101 |5 EXP:(DE-MLZ)DNS-20140101 |6 EXP:(DE-MLZ)NL6S-20140101 |x 0 |
| 700 | 1 | _ | |a Arbe, A. |0 P:(DE-HGF)0 |b 1 |e Corresponding author |
| 700 | 1 | _ | |a Alegría, A. |0 0000-0001-6125-8214 |b 2 |
| 700 | 1 | _ | |a Su, Y. |0 P:(DE-Juel1)130991 |b 3 |u fzj |
| 700 | 1 | _ | |a Gasser, U. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Colmenero, J. |0 P:(DE-HGF)0 |b 5 |
| 773 | _ | _ | |a 10.1063/1.4946004 |g Vol. 144, no. 15, p. 154903 - |0 PERI:(DE-600)1473050-9 |n 15 |p 154903 - |t The journal of chemical physics |v 144 |y 2016 |x 1089-7690 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/827713/files/1.4946004.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/827713/files/1.4946004.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/827713/files/1.4946004.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-700 |u https://juser.fz-juelich.de/record/827713/files/1.4946004.jpg?subformat=icon-700 |
| 909 | C | O | |o oai:juser.fz-juelich.de:827713 |p openaire |p open_access |p driver |p VDB:MLZ |p VDB |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130991 |
| 913 | 1 | _ | |a DE-HGF |9 G:(DE-HGF)POF3-6G15 |x 0 |4 G:(DE-HGF)POF |v FRM II / MLZ |1 G:(DE-HGF)POF3-6G0 |0 G:(DE-HGF)POF3-6G15 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |b Forschungsbereich Materie |l Großgeräte: Materie |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |2 G:(DE-HGF)POF3-600 |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2016 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM PHYS : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II |l JCNS-FRM-II |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|