001 | 827778 | ||
005 | 20210129225928.0 | ||
024 | 7 | _ | |a 10.1016/j.elspec.2016.04.008 |2 doi |
024 | 7 | _ | |a 0368-2048 |2 ISSN |
024 | 7 | _ | |a 1873-2526 |2 ISSN |
024 | 7 | _ | |a WOS:000382343100009 |2 WOS |
024 | 7 | _ | |a altmetric:4663683 |2 altmetric |
037 | _ | _ | |a FZJ-2017-01882 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Eiteneer, D. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO$_{3}$/SrTiO$_{3}$ Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission |
260 | _ | _ | |a New York, NY [u.a.] |c 2016 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1487657737_15844 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a LaNiO3 (LNO) is an intriguing member of the rare-earth nickelates in exhibiting a metal-insulator transition for a critical film thickness of about 4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such thin films also show a transition to a metallic state in superlattices with SrTiO3 (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to better understand this transition, we have studied a strained LNO/STO superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an (LaAlO3)0.3(Sr2AlTaO6)0.7 substrate using soft x-ray standing-wave-excited angle-resolved photoemission (SWARPES), together with soft- and hard- x-ray photoemission measurements of core levels and densities-of-states valence spectra. The experimental results are compared with state-of-the-art density functional theory (DFT) calculations of band structures and densities of states. Using core-level rocking curves and x-ray optical modeling to assess the position of the standing wave, SWARPES measurements are carried out for various incidence angles and used to determine interface-specific changes in momentum-resolved electronic structure. We further show that the momentum-resolved behavior of the Ni 3d eg and t2g states near the Fermi level, as well as those at the bottom of the valence bands, is very similar to recently published SWARPES results for a related La0.7Sr0.3MnO3/SrTiO3 superlattice that was studied using the same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which further validates this experimental approach and our conclusions. Our conclusions are also supported in several ways by comparison to DFT calculations for the parent materials and the superlattice, including layer-resolved density-of-states results. |
536 | _ | _ | |a 522 - Controlling Spin-Based Phenomena (POF3-522) |0 G:(DE-HGF)POF3-522 |c POF3-522 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Pálsson, G. K. |0 P:(DE-HGF)0 |b 1 |e Corresponding author |
700 | 1 | _ | |a Nemšák, S. |0 P:(DE-Juel1)164137 |b 2 |
700 | 1 | _ | |a Gray, A. X. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Kaiser, A. M. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Son, J. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a LeBeau, J. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Conti, G. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Greer, A. A. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Keqi, A. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Rattanachata, A. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Saw, A. Y. |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Bostwick, A. |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Rotenberg, E. |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Gullikson, E. M. |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Ueda, S. |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Kobayashi, K. |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Janotti, A. |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Van de Walle, C. G. |0 P:(DE-HGF)0 |b 18 |
700 | 1 | _ | |a Blanca-Romero, A. |0 P:(DE-HGF)0 |b 19 |
700 | 1 | _ | |a Pentcheva, R. |0 P:(DE-HGF)0 |b 20 |
700 | 1 | _ | |a Schneider, C. M. |0 P:(DE-Juel1)130948 |b 21 |
700 | 1 | _ | |a Stemmer, S. |0 P:(DE-HGF)0 |b 22 |
700 | 1 | _ | |a Fadley, C. S. |0 P:(DE-HGF)0 |b 23 |
773 | _ | _ | |a 10.1016/j.elspec.2016.04.008 |g Vol. 211, p. 70 - 81 |0 PERI:(DE-600)1491139-5 |p 70 - 81 |t Journal of electron spectroscopy and related phenomena |v 211 |y 2016 |x 0368-2048 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827778/files/1-s2.0-S0368204816300536-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827778/files/1-s2.0-S0368204816300536-main.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827778/files/1-s2.0-S0368204816300536-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827778/files/1-s2.0-S0368204816300536-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827778/files/1-s2.0-S0368204816300536-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/827778/files/1-s2.0-S0368204816300536-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:827778 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)164137 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 21 |6 P:(DE-Juel1)130948 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-522 |2 G:(DE-HGF)POF3-500 |v Controlling Spin-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J ELECTRON SPECTROSC : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |k PGI-6 |l Elektronische Eigenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|