000827780 001__ 827780
000827780 005__ 20210129225928.0
000827780 0247_ $$2doi$$a10.1103/PhysRevApplied.5.054009
000827780 0247_ $$2Handle$$a2128/13880
000827780 0247_ $$2WOS$$aWOS:000376015700001
000827780 037__ $$aFZJ-2017-01884
000827780 082__ $$a530
000827780 1001_ $$0P:(DE-HGF)0$$aSchaab, J.$$b0
000827780 245__ $$aContact-Free Mapping of Electronic Transport Phenomena of Polar Domains in SrMnO$_{3}$ Films
000827780 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2016
000827780 3367_ $$2DRIVER$$aarticle
000827780 3367_ $$2DataCite$$aOutput Types/Journal article
000827780 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1487658004_15851
000827780 3367_ $$2BibTeX$$aARTICLE
000827780 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827780 3367_ $$00$$2EndNote$$aJournal Article
000827780 520__ $$aHigh-resolution mapping of electronic transport phenomena plays an increasingly important role for the characterization of ferroic domains and their functionality. At present, spatially resolved electronic transport data are commonly gained from local two-point measurements, collected in line-by-line scans with a conducting nanosized probe. Here, we introduce an innovative experimental approach based on low-energy electron microscopy. As a model case, we study polar domains of varying conductance in strained SrMnO3. By a direct comparison with conductive atomic force and electrostatic force microscopy, we reveal that the applied low-energy electron-microscopy experiment can be considered as an inverse I(V) measurement, providing access to the local electronic conductance with nanoscale resolution and short data-acquisition times in the order of 10–102 ms. Low-energy electrons thus hold yet unexplored application opportunities as a minimal-invasive probe for local electronic transport phenomena, opening a promising route towards spatially resolved, high-throughput sampling at the nanoscale.
000827780 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000827780 588__ $$aDataset connected to CrossRef
000827780 7001_ $$0P:(DE-HGF)0$$aKrug, I. P.$$b1
000827780 7001_ $$0P:(DE-Juel1)140485$$aDoğanay, H.$$b2
000827780 7001_ $$0P:(DE-Juel1)164109$$aHackl, J.$$b3
000827780 7001_ $$0P:(DE-HGF)0$$aGottlob, D. M.$$b4
000827780 7001_ $$0P:(DE-Juel1)164112$$aKhan, M. I.$$b5
000827780 7001_ $$0P:(DE-Juel1)164137$$aNemšák, S.$$b6
000827780 7001_ $$0P:(DE-HGF)0$$aMaurel, L.$$b7
000827780 7001_ $$0P:(DE-HGF)0$$aLangenberg, E.$$b8
000827780 7001_ $$0P:(DE-HGF)0$$aAlgarabel, P. A.$$b9
000827780 7001_ $$0P:(DE-HGF)0$$aPardo, J. A.$$b10
000827780 7001_ $$0P:(DE-Juel1)130948$$aSchneider, C. M.$$b11
000827780 7001_ $$0P:(DE-HGF)0$$aMeier, D.$$b12$$eCorresponding author
000827780 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.5.054009$$gVol. 5, no. 5, p. 054009$$n5$$p054009$$tPhysical review applied$$v5$$x2331-7019$$y2016
000827780 8564_ $$uhttps://juser.fz-juelich.de/record/827780/files/PhysRevApplied.5.054009.pdf$$yOpenAccess
000827780 8564_ $$uhttps://juser.fz-juelich.de/record/827780/files/PhysRevApplied.5.054009.gif?subformat=icon$$xicon$$yOpenAccess
000827780 8564_ $$uhttps://juser.fz-juelich.de/record/827780/files/PhysRevApplied.5.054009.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000827780 8564_ $$uhttps://juser.fz-juelich.de/record/827780/files/PhysRevApplied.5.054009.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000827780 8564_ $$uhttps://juser.fz-juelich.de/record/827780/files/PhysRevApplied.5.054009.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000827780 8564_ $$uhttps://juser.fz-juelich.de/record/827780/files/PhysRevApplied.5.054009.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000827780 909CO $$ooai:juser.fz-juelich.de:827780$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000827780 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164109$$aForschungszentrum Jülich$$b3$$kFZJ
000827780 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164112$$aForschungszentrum Jülich$$b5$$kFZJ
000827780 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164137$$aForschungszentrum Jülich$$b6$$kFZJ
000827780 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b11$$kFZJ
000827780 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000827780 9141_ $$y2017
000827780 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827780 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000827780 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2015
000827780 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827780 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827780 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000827780 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000827780 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000827780 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827780 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827780 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000827780 980__ $$ajournal
000827780 980__ $$aVDB
000827780 980__ $$aUNRESTRICTED
000827780 980__ $$aI:(DE-Juel1)PGI-6-20110106
000827780 9801_ $$aFullTexts