001     827780
005     20210129225928.0
024 7 _ |a 10.1103/PhysRevApplied.5.054009
|2 doi
024 7 _ |a 2128/13880
|2 Handle
024 7 _ |a WOS:000376015700001
|2 WOS
037 _ _ |a FZJ-2017-01884
082 _ _ |a 530
100 1 _ |a Schaab, J.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Contact-Free Mapping of Electronic Transport Phenomena of Polar Domains in SrMnO$_{3}$ Films
260 _ _ |a College Park, Md. [u.a.]
|c 2016
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1487658004_15851
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High-resolution mapping of electronic transport phenomena plays an increasingly important role for the characterization of ferroic domains and their functionality. At present, spatially resolved electronic transport data are commonly gained from local two-point measurements, collected in line-by-line scans with a conducting nanosized probe. Here, we introduce an innovative experimental approach based on low-energy electron microscopy. As a model case, we study polar domains of varying conductance in strained SrMnO3. By a direct comparison with conductive atomic force and electrostatic force microscopy, we reveal that the applied low-energy electron-microscopy experiment can be considered as an inverse I(V) measurement, providing access to the local electronic conductance with nanoscale resolution and short data-acquisition times in the order of 10–102  ms. Low-energy electrons thus hold yet unexplored application opportunities as a minimal-invasive probe for local electronic transport phenomena, opening a promising route towards spatially resolved, high-throughput sampling at the nanoscale.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Krug, I. P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Doğanay, H.
|0 P:(DE-Juel1)140485
|b 2
700 1 _ |a Hackl, J.
|0 P:(DE-Juel1)164109
|b 3
700 1 _ |a Gottlob, D. M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Khan, M. I.
|0 P:(DE-Juel1)164112
|b 5
700 1 _ |a Nemšák, S.
|0 P:(DE-Juel1)164137
|b 6
700 1 _ |a Maurel, L.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Langenberg, E.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Algarabel, P. A.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Pardo, J. A.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Schneider, C. M.
|0 P:(DE-Juel1)130948
|b 11
700 1 _ |a Meier, D.
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
773 _ _ |a 10.1103/PhysRevApplied.5.054009
|g Vol. 5, no. 5, p. 054009
|0 PERI:(DE-600)2760310-6
|n 5
|p 054009
|t Physical review applied
|v 5
|y 2016
|x 2331-7019
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/827780/files/PhysRevApplied.5.054009.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/827780/files/PhysRevApplied.5.054009.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/827780/files/PhysRevApplied.5.054009.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/827780/files/PhysRevApplied.5.054009.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/827780/files/PhysRevApplied.5.054009.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/827780/files/PhysRevApplied.5.054009.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:827780
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)164109
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)164112
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)164137
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130948
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21