001     827784
005     20210129225929.0
024 7 _ |a 10.1021/acs.langmuir.6b04304
|2 doi
024 7 _ |a 0743-7463
|2 ISSN
024 7 _ |a 1520-5827
|2 ISSN
024 7 _ |a WOS:000393269700026
|2 WOS
024 7 _ |a altmetric:15565354
|2 altmetric
024 7 _ |a pmid:28059515
|2 pmid
037 _ _ |a FZJ-2017-01888
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Kube, Sarah
|0 P:(DE-Juel1)162355
|b 0
|e Corresponding author
245 _ _ |a Fusogenic Liposomes as Nanocarriers for the Delivery of Intracellular Proteins
260 _ _ |a Washington, DC
|c 2017
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1487658240_15848
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Direct delivery of proteins and peptides into living mammalian cells has been accomplished using phospholipid liposomes as carrier particles. Such liposomes are usually taken up via endocytosis where the main part of their cargo is degraded in lysosomes before reaching its destination. Here, fusogenic liposomes, a newly developed molecular carrier system, were used for protein delivery. When such liposomes were loaded with water-soluble proteins and brought into contact with mammalian cells, the liposomal membrane efficiently fused with the cellular plasma membrane delivering the liposomal content to the cytoplasm without degradation. To explore the key factors of proteofection processes, the complex formation of fusogenic liposomes and proteins of interest and the size and zeta potential of the formed fusogenic proteoliposoms were monitored. Intracellular protein delivery was analyzed using fluorescence microscopy and flow cytometry. Proteins such as EGFP, Dendra2, and R-phycoerythrin or peptides such as LifeAct-FITC and NTF2-AlexaFluor488 were successfully incorporated into mammalian cells with high efficiency. Moreover, correct functionality and faithful transport to binding sites were also proven for the imported proteins.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hersch, Nils
|0 P:(DE-Juel1)128815
|b 1
|u fzj
700 1 _ |a Naumovska, Elena
|0 P:(DE-Juel1)156228
|b 2
700 1 _ |a Gensch, Thomas
|0 P:(DE-Juel1)131924
|b 3
|u fzj
700 1 _ |a Hendriks, Johnny
|0 P:(DE-Juel1)141764
|b 4
700 1 _ |a Franzen, Arne
|0 P:(DE-Juel1)131923
|b 5
|u fzj
700 1 _ |a Landvogt, Lisa
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Siebrasse, Jan-Peter
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kubitscheck, Ulrich
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hoffmann, Bernd
|0 P:(DE-Juel1)128817
|b 9
|u fzj
700 1 _ |a Merkel, Rudolf
|0 P:(DE-Juel1)128833
|b 10
|u fzj
700 1 _ |a Csiszár, Agnes
|0 P:(DE-Juel1)128805
|b 11
|e Corresponding author
773 _ _ |a 10.1021/acs.langmuir.6b04304
|g Vol. 33, no. 4, p. 1051 - 1059
|0 PERI:(DE-600)2005937-1
|n 4
|p 1051 - 1059
|t Langmuir
|v 33
|y 2017
|x 1520-5827
856 4 _ |u https://juser.fz-juelich.de/record/827784/files/acs.langmuir.6b04304.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827784/files/acs.langmuir.6b04304.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827784/files/acs.langmuir.6b04304.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827784/files/acs.langmuir.6b04304.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827784/files/acs.langmuir.6b04304.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/827784/files/acs.langmuir.6b04304.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:827784
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128805
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131924
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131923
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128817
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128833
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128805
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LANGMUIR : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-7-20110106
|k ICS-7
|l Biomechanik
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-4-20110106
|k ICS-4
|l Zelluläre Biophysik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312
981 _ _ |a I:(DE-Juel1)IBI-1-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21