000827844 001__ 827844
000827844 005__ 20210129225935.0
000827844 0247_ $$2doi$$a10.1016/j.neurobiolaging.2017.01.012
000827844 0247_ $$2ISSN$$a0197-4580
000827844 0247_ $$2ISSN$$a1558-1497
000827844 0247_ $$2WOS$$aWOS:000399501300004
000827844 0247_ $$2altmetric$$aaltmetric:15554352
000827844 0247_ $$2pmid$$apmid:28208063
000827844 037__ $$aFZJ-2017-01935
000827844 082__ $$a610
000827844 1001_ $$0P:(DE-Juel1)167565$$aRichter, Nils$$b0$$eCorresponding author
000827844 245__ $$aWhite matter lesions and the cholinergic deficit in aging and mild cognitive impairment
000827844 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000827844 3367_ $$2DRIVER$$aarticle
000827844 3367_ $$2DataCite$$aOutput Types/Journal article
000827844 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1488266203_6800
000827844 3367_ $$2BibTeX$$aARTICLE
000827844 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000827844 3367_ $$00$$2EndNote$$aJournal Article
000827844 520__ $$aIn Alzheimer's disease (AD), white matter lesions (WMLs) are associated with an increased risk of progression from mild cognitive impairment (MCI) to dementia, while memory deficits have, at least in part, been linked to a cholinergic deficit. We investigated the relationship between WML load assessed with the Scheltens scale, cerebral acetylcholinesterase (AChE) activity measured with [11C]N-methyl-4-piperidyl acetate PET, and neuropsychological performance in 17 patients with MCI due to AD and 18 cognitively normal older participants. Only periventricular, not nonperiventricular, WML load negatively correlated with AChE activity in both groups. Memory performance depended on periventricular and total WML load across groups. Crucially, AChE activity predicted memory function better than WML load, gray matter atrophy, or age. The effects of WML load on memory were fully mediated by AChE activity. Data suggest that the contribution of WML to the dysfunction of the cholinergic system in MCI due to AD depends on WML distribution. Pharmacologic studies are warranted to explore whether this influences the response to cholinergic treatment.
000827844 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000827844 588__ $$aDataset connected to CrossRef
000827844 7001_ $$0P:(DE-HGF)0$$aMichel, Anne$$b1
000827844 7001_ $$0P:(DE-Juel1)131736$$aOnur, Özgür$$b2
000827844 7001_ $$0P:(DE-HGF)0$$aKracht, Lutz$$b3
000827844 7001_ $$0P:(DE-HGF)0$$aDietlein, Markus$$b4
000827844 7001_ $$0P:(DE-HGF)0$$aTittgemeyer, Marc$$b5
000827844 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b6
000827844 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b7
000827844 7001_ $$0P:(DE-Juel1)131730$$aKukolja, Juraj$$b8
000827844 773__ $$0PERI:(DE-600)1498414-3$$a10.1016/j.neurobiolaging.2017.01.012$$gVol. 53, p. 27 - 35$$p27 - 35$$tNeurobiology of aging$$v53$$x0197-4580$$y2017
000827844 8564_ $$uhttps://juser.fz-juelich.de/record/827844/files/1-s2.0-S0197458017300209-main.pdf$$yRestricted
000827844 8564_ $$uhttps://juser.fz-juelich.de/record/827844/files/1-s2.0-S0197458017300209-main.gif?subformat=icon$$xicon$$yRestricted
000827844 8564_ $$uhttps://juser.fz-juelich.de/record/827844/files/1-s2.0-S0197458017300209-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000827844 8564_ $$uhttps://juser.fz-juelich.de/record/827844/files/1-s2.0-S0197458017300209-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000827844 8564_ $$uhttps://juser.fz-juelich.de/record/827844/files/1-s2.0-S0197458017300209-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000827844 8564_ $$uhttps://juser.fz-juelich.de/record/827844/files/1-s2.0-S0197458017300209-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000827844 909CO $$ooai:juser.fz-juelich.de:827844$$pVDB
000827844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167565$$aForschungszentrum Jülich$$b0$$kFZJ
000827844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b6$$kFZJ
000827844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b7$$kFZJ
000827844 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000827844 9141_ $$y2017
000827844 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000827844 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000827844 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000827844 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROBIOL AGING : 2015
000827844 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000827844 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000827844 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000827844 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000827844 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000827844 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000827844 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000827844 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000827844 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000827844 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROBIOL AGING : 2015
000827844 920__ $$lyes
000827844 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000827844 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x1
000827844 980__ $$ajournal
000827844 980__ $$aVDB
000827844 980__ $$aI:(DE-Juel1)INM-3-20090406
000827844 980__ $$aI:(DE-Juel1)INM-5-20090406
000827844 980__ $$aUNRESTRICTED