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The Goldston heuristic estimate of the scrape-off layer width (Nucl. Fusion 52, 013009, 2012)
is reconsidered using a fluid description for the plasma dynamics. The basic ingredient is the
inclusion of a compressible diamagnetic drift for the particle cross field transport. Instead of
testing the heuristic model in a sophisticated numerical simulation including several physical
mechanisms working together, the purpose of this work is to point out basic consequences for a
drift-dominated cross field transport using a reduced fluid model. To evaluate the model equations
and prepare them for subsequent numerical solution a specific analytical model for 2D magnetic
field configurations with X-points is employed. In a first step parameter scans in high-resolution
grids for isothermal plasmas are done to assess the basic formulas of the heuristic model with
respect to the functional dependence of the scrape-off width on the poloidal magnetic field and
plasma temperature. Particular features in the 2D-fluid calculations - especially the appearance
of supersonic parallel flows and shock wave like bifurcational jumps - are discussed and can be
understood partly in the framework of a reduced 1D model. The resulting semi-analytical findings
might give hints for experimental proof and implementation in more elaborated fluid simulations.

I. INTRODUCTION

The heuristic model of Goldston [1] has attracted much
interest and discussion in the studies of scrape-off layer
power width and has been compared with several exper-
imental results [2; 3]. However, its analytical framework
does not take into account several details of the mag-
netic field shaping, parallel flow balances, electric fields
and neutral physics. The purpose of this contribution
is to complement the heuristic estimate of Goldston and
to assess the particular implications of the drift-based
radial particle transport for the scrape-off layer (SOL)
width in an axisymmetric tokamak geometry including
an X-point. The basic ideas of Goldston’s approach are
rewritten as a reduced 2D fluid model taking into ac-
count particle balance and parallel momentum balance in
an isothermal plasma. The basic ingredient is the inclu-
sion of a compressible diamagnetic drift for the particle
cross field transport. Numerical solution of this reduced
transport model shows that

(1) the specifics of the drift-based radial transport in-
troduces particle and momentum sinks in the SOL dy-
namics causing supersonic flows - contrary to diffusive
seeding of the SOL.

(2) in standard ASDEX Upgrade geometry and in case
that particle transport is determined by electron diamag-
netic drift the SOL width is often well approximated by
a constant decay length Λ, characterizing an exponential
decay of particle density with respect to the flux label
coordinate.

(3) for radial particle flows dominated by the ion dia-
magnetic drift a globally constant decay length is not
established for the standard ASDEX Upgrade configura-
tion and parallel flows exhibit shock wave like signatures
with strong gradients in density and Mach number.

(4) the basic dependencies of SOL width on the
poloidal Larmor radius remain unchanged in X-point ge-
ometries.

In the cases where an almost constant density decay
length is found the reduction to a 1D model is justified
and it is shown that the resulting semi-analytical predic-
tions reproduce quite well the findings of the 2D simula-
tions, in particular the supersonic transitions. Moreover,
it offers an alternative derivation for Goldston’s estimate
and can be extended easily to an estimate including addi-
tional particle diffusion, therefore giving boundaries for
detailed studies of the drift-based transport with more
sophisticated fluid simulations, e. g. a study with first
results on more detailed modelling of drift effects closely
related to the considerations in this work published re-
cently [4].

The paper is structured as follows: In Section II the
basic equations of the 2D fluid model are presented and
in Section III the model tokamak geometry for the nu-
merical simulations are elucidated. Results for the den-
sity profiles and flow velocities obtained by numerical so-
lution of the 2D model in the electron drift dominated
regime are presented and discussed in Section IV. Justi-
fied by these 2D results a 1D model reduction is derived
and presented in Section V. In Section VI the ion-drift
dominated regime is considered and its significant dis-
crepancies to the results of Section IV are discussed. In
Section VII further results from 2D simulations for vary-
ing plasma parameters are presented and compared with
the predictions of the reduced 1D model. In Section VIII
also the effect of an additional diffusive particle transport
is analysed on the basis of 2D simulations and a simple
extension of the 1D model as well. The concluding Sec-
tion IX summarizes the results of this paper.

II. FLUID FORMULATION OF GOLDSTON’S HEURISTIC

MODEL

To study the consequences of Goldston’s ideas on the
drift-based SOL width in a tokamak geometry with X-
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point and asymmetrical shaping a simplified model is
considered translating the ideas of the heuristic model
presented in [1] to a 2D fluid picture for the plasma dy-
namics. In this first stage the model consists of the bal-
ance equations for particles and parallel ion momentum.
The electron and ion temperatures are assumed to be
equal and prescribed. Parallel currents are neglected, i.e.
u‖ = v‖, where u‖ is the parallel ion flow velocity and
v‖ the parallel electron velocity. The model equations
for the particle density n and the velocity u‖ in a SOL
without particle and momentum sources read

∂n

∂t
+∇ · (nu‖)±∇ · (nu∗) = 0 (1)

∂

∂t

(

nu‖

)

+∇ ·
(

nu‖u‖

)

= −2∇‖p

mi
(2)

where

u∗ =
B×∇p

enB2
(3)

denotes the ion diamagnetic drift and u‖ is the parallel
ion velocity. The divergence of the diamagnetic particle
flux can be rewritten due to the following relation

∇ · (nu∗) = ∇ ·
(

B×∇p

eB2

)

= ∇ · (nu×) = u× · ∇p

T
(4)

The velocity u× is given as

u× =
T

e
∇× B

B2
=

2T

eB

B×∇B

B2
+

T

e

∇×B

B2
(5)

and is representing the particle guiding center drifts in an
inhomogeneous magnetic field [5; 6]. This particular re-
lation between the ∇B-guiding center drift and the fluid
diamagnetic drift is discussed in detail in Sec. 4.5 of the
monograph of Hazeltine and Meiss [7]. On the one hand
the Eqs. 1 and 2 considered here define an exercise to
study the signature of perpendicular particle flow dom-
inated by diamagnetic effects as discussed by Goldston.
But it is important to note that the corresponding dia-
magnetic currents immediately opens the discussion on
the meaning of these approximations with respect to the
underlying distribution of current density J with repsect
to the requirement of quasineutrality, i. e. ∇ · J=0. To
retain readability of the text a more detailed considera-
tion of this issue has been put into Appendix A. Here
we just confine ourselves to the brief comment that we
assume that either the electron or the ion diamagnetic
drift dominate the particle transport and other contri-
butions due to parallel currents, electric fields, viscous
drifts and sources cancel out. Of course, this limits the
range of validity of the proposed model. In particular
particle sources as a consequence, e. g. from strong re-
cycling might change the results strongly. However, the
intention of this work is to extract the signatures of a
transport based on diamagnetic drift effects and postpon-
ing extensions to future work. Therefore, following the

discussions in [1] and in Appendix A of this work we re-
fer these distinct scenarios as electron-diamagnetic-drift
regime (EDD-regime) and ion-diamagnetic-drift regime
(IDD-regime). Due to the assumption of equal electron
and ion temperature used here the diamagnetic electron
drift v∗ is just the −u∗, the ion diamagnetic drift with
opposite sign. and therefore, choosing the plus-sign in
Eq. 1 means that the perpendicular particle transport is
driven by the ion magnetic drift, whereas the minus-sign
means that an electron drift dominated regime is consid-
ered.

III. MODEL MAGNETIC FIELD CONFIGURATION

An axisymmetric magnetic field B is described in right-
handed orthogonal coordinates (r, θ, φ) by

B = Bθ
eθ +Bφ

eφ (6)

The coordinate r is a flux label. For a divergence free
field, i. e.

∇ ·B =
1

J

∂

∂θ

(

JBθ
)

= 0 (7)

the poloidal contravariant component Bθ must be of the
form

Bθ =
B0 C

J
(8)

where C = C(r) is a flux label too, B0 is a constant and
J=er · eθ × eφ is the Jacobian. The function C(r) is di-
rectly related to the plasma current Ip and can be chosen
by requiring a particular value for the flux surface aver-
aged physical poloidal field 〈B̂θ〉 at the separatrix accord-
ing to an experimental setup and using the approximate
formula

〈B̂θ〉 =
µ0Ip

2πa
√

(1 + κ2)/2
(9)

where a is the minor radius and κ denotes the elongation
[9]. The toroidal contravariant component is chosen in a
tokamak like form

Bφ =
B0R0

R2
(10)

where the functional relation for R as a function of r and
θ is given in the Appendix B by Eq. B2. The detailed
definition of the coordinates (r, θ, φ) based on a conformal
map is also presented in Appendix B. The explicit form
of the model equations Eqs. 1-2 for these coordinates is

∂n

∂t
+

1

J

∂

∂θ

(

J
Bθ

B
nu‖±Jnuθ

×

)

± 1

J

∂

∂r

(

Jnur
×

)

= 0 (11)

∂

∂t

(

minu‖

)

+
1

J

∂

∂θ

(

J
Bθ

B
minu

2

‖

)

= −2Bθ

B

∂p

∂θ
(12)
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where the contravariant components of u× are

ur
× = − 2T

eB

Bφ

JB2

∂B

∂θ
, uθ

× =
2T

eB

Bφ

JB2

∂B

∂r
, (13)

The magnetic field geometry considered in this work is
sketched in Fig. 1 left, and profiles of the physical radial
component u× for this configuration are shown in Fig. 2
and in Fig. 3 top.
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FIG. 1 (Color online) Model geometry for ASDEX like mag-
netic field based on the conformal mapping presented in the
Appendix B. On the left the computational domain is shown
for R0=1.65 m, h=1.2 m and rotation angle ξ=-0.15 (with
a smaller number of grid points than used in the computa-
tions for better visibility). The points in red label the inner
target (θ=-0.7), the points in blue the outer target (θ=6.98).
The separatrix is located at r=h and 0≤θ≤2π. The X-point
is located at θ=0 and θ=2π, respectively. The right figure
shows the equilibrium reconstruction of ASDEX Upgrade shot
No. 32291 at t=2 s serving as a template for the conformal
map in the left figure.

IV. 2D SIMULATIONS IN X-POINT GEOMETRY FOR
ELECTRON DIAMAGNETIC DRIFT DOMINATED
TRANSPORT

At first we study the regime dominated by the elec-
tron diamagnetic drift (denoted by EDD-regime in Ap-
pendix A). The model equations Eqs. 11 (with minus-
sign) and 12 are solved numerically on orthogonal (r, θ)-
grids of size Nr×Nθ=200×100 prepared by the conformal
map of Appendix B. A sketch of the computational grid
(less resolution than used in the simulations) is shown in
Fig. 1. Standard second order discretization is used for
the spatial derivatives. For the time stepping a second or-
der Runge-Kutta-scheme and a time step ∆t=1.0·10−8 is
employed. The Kurganov-Tadmor central semi-discrete
scheme is used for the conservative part of the evolution
equations [10]. At the targets sheath boundary condi-
tions are imposed, i. e. ∂n/∂θ=0 and u‖=±cs, where

c2s=
√

2T/mi defines the sound speed. For the outer
boundary zero derivatives are assumed for n and u‖ and
at the separatrix the density is prescribed by a constant
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FIG. 2 (Color online) Physical component of the radial com-
ponent of velocity u× defined by Eq. 5 being responsible for
advection of particles into and out of the SOL for the model
geometry used in this work and sketched in Fig. 1. The ar-
rows and the vector direction symbol give orientation on the
direction of increasing angle θ, the sign of the poloidal mag-
netic field Bθ with respect to the angle coordinate direction
and the direction of the toroidal basis vector eφ.

value 2·1019 m−3, whereas the velocity gradient is set
to zero, ∂u‖/∂r=0. The time evolution of density n
and flow velocity u‖ is followed until a stationary state
is obtained. The parameters chosen were R0=1.65 m,
h=1.2 m, C=0.2785, B0=2.5 T, T=75 eV and an ion
mass mi=2 mp. The value for C provides a separatrix

averaged value 〈B̂θ〉=-0.28 T. The rotation angle ξ has
been chosen as -0.15. The definition of the geometric
quantities r, R0, h and ξ is given in the Appendix B.
The Fig. 3 shows results for the stationary profiles n(θ)
and u‖(θ) at r=1.002 h, i. e. inside the SOL and close to
the separatrix. The corresponding radial profiles of the
density n(r) at the inner and outer target and the inner
and outer midplane are shown in Fig. 4. The density
profile in Fig. 3 shows a pronounced maximum occuring
in the central region where the electron drift -ur

× is pos-
itive, therefore providing an inflow from the core plasma
into the SOL (see Fig. 3 top). The poloidal component
of u× is more than 2 orders of magnitude smaller than
the poloidal projection of sound speed and does not have
a significant impact on the parallel flow. The most strik-
ing result is the appearance of supersonic flows with Mach
number M=u‖/cs, c

2
s=2T/mi, being above 1 or less than



4

0

3

6

9

0 π 2π
0

3

6

9

n
 [

1
0

1
8
 m

-3
]

λ
 [

m
m

]

n
λ

-2

-1

0

+1

+2

0 inboard π outboard 2π

-2

-1

0

+1

+2

u
||
/c

s

θ [rad]

M

-60

-30

0

30

60

0 π 2π
-60

-30

0

30

60
u

x
,r
 [

m
/s

]
ξ=-0.15

FIG. 3 (Color online) From top to bottom: profiles of the
radial physical component of the drift velocity u×, the density
n and Mach number vs poloidal angle θ for the magnetic field
configuration with ξ=-0.15 and at r-h=2.5 mm. The green
lines label the points where ur

×=0. Additionally the center
plot includes the profile of the decay length Λ given by the
numerical values of |∂ lnn/∂r|−1.

-1 in the velocity profile (Fig. 3 bottom). A very impor-
tant result of the 2D simulations is an almost exponential
decay of the density n∼e−r/Λ with respect to the flux la-
bel r and Λ being almost constant along θ inside the SOL
and not to close to the separatrix. This is illustrated by
the red colored line in the mid figure of Fig. 3 showing
Λ=|∂ lnn/∂r|−1 and by the logarithmic plots in Fig. 4
bottom. Right at the separatrix the results are consid-
ered as less significant, because the fixed particle density
boundary condition there is probably not well suited to
get a realistic picture for the inflow/outflow conditions.
For this reason the following discussion is restricted to the
region r>1.0021 h, where boundary effects do not play a
significant role anymore (this has been proved by the use
of different boundary conditions).
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FIG. 4 (Color online) Profiles of density n at the inner and
outer target and the inner and outer midplane in linear (top)
and logarithmic (bottom) representation. The separatrix is
located at r=h. The black line in the bottom figure is the
fitting curve e−r/Λ where the averaged value of Λ shown in
Fig. 3 is used.

V. 1D MODEL REDUCTION

Justified by the results of the 2D simulation described
in the previous section it is assumed that

∂n

∂r
= −n

Λ
(14)

where Λ=const. Note that the physical decay length λ
is given by λ=

√
grrΛ, where the square root of the met-

ric coefficient grr determines the flux expansion factor fx
often used in the analysis of scrape-off widths [2]. The
flux expansion fx can be understood as the ratio between
the values of

√
grr at the target and the outer midplane.

Furthermore, the model equations Eqs. 11-12 are simpli-
fied by neglecting the poloidal component of the velocity
u×, any particle sources and the terms due to the parallel
variation of B (except in the diamagnetic effects). These
assumptions were justified a posteriori by switching off
the particular terms in the 2D simulations and proving
that the results were not significantly changed. Based on
these assumptions the stationary case in EDD-regime is
described by a one-dimensional model

u‖
∂n

∂θ
= −n

∂u‖

∂θ
− B

Bθ

ur
×

Λ
n (15)

u‖

∂u‖

∂θ
= −2T

mi

∂n/∂θ

n
(16)
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Combining these equations, and using the Mach number
M=u‖/cs and the logarithmic density N=lnn as depen-
dent variables, one obtains

(1−M2)
∂M

∂θ
= F, F = − B

Bθ

ur
×

Λcs
(17)

∂N

∂θ
= −M

∂M

∂θ
(18)

The solutions of Eqs. 17 and 18 are

M − M3

3
= K, K = −

∫

B

Bθ

ur
×

Λcs
dθ + CM (19)

N = −M2

2
+ CN (20)

where CM and CN are constant. Depending on the par-
ticular value of K different solution branches for Eq. 19
and thus bifurcations are possible as illustrated by Fig. 5.
Inspection of Eq. 17 shows that the points where the drift
velocity ur

x is zero are of special interest because there
∂M/∂θ=0 and/or M=±1. Thus, if F=0 and ∂M/∂θ
and ∂F/∂θ are finite, a transition occurs to supersonic
parallel flow with |M |>1. Differentiation of Eq. 17 gives
the following relation valid for such transition points

∂F

∂θ

∣

∣

∣

∣

|M|=1

= −2M

(

∂M

∂θ

)2

(21)

with the consequence that if F=0 and ∂F/∂θ>0 at a par-
ticular point only a supersonic transition through M=-1
is possible, whereas F=0 together with ∂F/∂θ<0 is com-
patible only with a transition through M=+1. A sit-
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FIG. 5 (Color online) Illustration of a graphical solution of
Eq. 19. If |K|<2/3 three solutions exist (example K=0.4
labeled by circles). For |K|=2/3 two solutions exist and for
|K|>2/3 only a single real solution is possible.

uation relevant for the drift-based transport considered
in this work is the existence of - at least - two possi-
ble transition points where ur

×=0 (see Fig. 3 top). This
is due to the fact that the diamagnetic flows always in-
troduce both, regions of particle inflow and outflow in
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FIG. 6 (Color online) Profiles of Mach number and density
vs poloidal angle θ already shown in Fig. 3 but here com-
plemented by the three possible solution branches of Eq. 19.
The region between the two transition points is highlighted
in green.

the SOL. Requiring M=±1 at two consecutive transition
points, with ur

× not changing sign between these points,
a conditional equation for the decay length Λ results from
Eq. 17

Λ =
3

4

∫
∣

∣

∣

∣

B

Bθ

ur
×

cs

∣

∣

∣

∣

dθ (22)

The integral is taken from one transition point to the
next one. This situation with two consecutive transition
points corresponds to the result for the Mach number
M shown in Fig. 3 bottom, where the green lines label
the special points where ur

×=0. Using Eq. 22 the solu-
tion branches of Eq. 19 can be calculated. The possible
solutions for |M |=1 appearing at two points along the
magnetic field line are sketched in Fig. 6 by three dotted
lines and compared with the results from the 2D simula-
tions of Fig. 3. In the 2D simulations the system picks a
certain solution which follows closely the smooth solution
branch of Eq. 19 connecting the points of supersonic tran-
sition. Also the density profile agrees well with the result

n∼e−M2/2. The agreement is optimal for the region be-
tween the two transition points, where the particles are
pushed across the sparatrix into the SOL (highlighted in
green in Fig. 6). Outside this region the agreement is not
as good, but still the 1D result gives a good qualitative
description of the solution found in the detailed 2D sim-
ulation. Therefore, the analysis of the 1D reduced model
explains the supersonic flows in the results presented for
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the EDD-regime above. Of course, not all features can
be covered by the 1D consideration, in particular because
the assumption of a constant Λ is not always justified for
different magnetic field configurations. However, the ba-
sic features of the profiles found by 2D simulations are
very well understood in the light of the analysis of the
simplified 1D model and, therefore, it provides a good ap-
proximation for semi-analytical considerations. Finally,
it should be noted that for cylindrical geometry the inte-
gral in Eq. 22 can be estimated via

ur
× ≈ 2T

eBR0

cos θ, Bθ ≈ B̂θ

a
(23)

where a is the minor radius and B̂θ the physical com-
ponent of the poloidal magnetic field. Integration for
π/2≤θ≤3π/2 gives for the scrape-off width

Λ =
3aT

eB̂θR0cs
(24)

and this result is - despite a factor of 4/3 - identical
with Goldston’s estimate for λ for singly charged ions and
atomic mass of 2 (Eq. 1 in [1]). Thus, the assumption of
supersonic transitions in the fluid model considered here
offers an alternative derivation of Goldston’s estimate for
the scrape-off width.

VI. 2D SIMULATIONS IN X-POINT GEOMETRY FOR ION
DIAMAGNETIC DRIFT DOMINATED TRANSPORT

In this section the exercise of Sec. IV is repeated, but
for the regime dominated by the ion diamagnetic drift
(denoted by IDD-regime in Appendix A). At this point
it is important to note that the simple expression Eq. 22
- and even more the estimate Eq. 24 - giving a quick es-
timate for the SOL width and building a bridge to Gold-
ston’s approach has to be used with care. To illustrate
the subtleties an example of 2D simulations and the re-
lated 1D approximation is discussed here where the same
parameters are used to obtain the results of Figs. 3, 4
and 6, but with plus-sign in Eqs. 1 and 11, i. e. switch-
ing from EDD- to IDD-regime. The results analogous to
Fig. 3 are shown in Fig. 7. The density and Mach num-
ber profiles shown in the center bottom figure are very
different to the case discussed above. Now two max-
ima appear in the density profile, corresponding to the
particle feeding in the two regions with ur

×>0 and the
velocity profile shows a jump in the center region close
to θ=π. In this case supersonic transitions occur, but at
different locations, and also a minimum, i. e. ∂M/∂θ=0,
appears at a point with ur

×=0. The most important dif-
ferences with respect to the estimates discussed above is
the smaller value for Λ found in the 2D simulations (the
red curve in the center plot) and the appearance of a
bifurcational shock wave like structure becoming mani-
fest in the discontinuous jump of the Mach number. A
closer inspection of these results shows that this reduced
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FIG. 7 (Color online) Simulation for the parameters chosen
for Fig. 3 but for the ion diamagnetic drift dominated regime.
From top to bottom: profiles of the radial physical compo-
nent of the drift velocity u×, the density n and Mach number
vs poloidal angle θ for the magnetic field configuration with
ξ=-0.15. The green lines label the points where ur

×=0. Addi-
tionally the center plot includes the profile of the decay length
Λ given by the numerical values of |∂ lnn/∂r|−1.

SOL width in the outboard region (Λ=1.23 mm instead of
Λ=2.24 mm in the case discussed above) can be related
again to Eq. 22 but now for the points at θ=3.94 and
θ=6.40 connecting two supersonic transitions. It might
be speculated that the inflow regions with ur

×>0 deter-
mine the velocity profile and therefore transition points
and SOL width Λ. On the other hand, the discontinuity
in M can be explained by a bifurcation forced by the con-
straint given by Eq. 17 constraining the parallel flow to
∂M/∂θ=0 and/or M=±1 at the points where the drift
velocity ur

x is zero. But, the reason why the dynamical
system is choosing ∂M/∂θ=0 at one point and not |M |=1
is not clear up to now. This example demonstrates that
the details of the X-point geometry have a significant im-
pact on the SOL width, which is not taken into account
in a formula like Eq. 24. Also a significant difference is
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FIG. 8 (Color online) Top: Dependence of Λ on the elec-
tron temperature Te in electron drift dominated regime.
Shown are the profiles of the inverse logarithmic derivatives
Λ=|∂ lnn/∂r|−1 overlaid by straight lines representing the
poloidal averages. Bottom: Log-Log-plot to prove the para-
metric dependence according to Eq. 22. for Λ.

apparent between the IDD- and EDD-regime. A particle
inflow from the SOL to core in the upper region opposite
to the X-point seems to separate the inboard and out-
board region leading to shock wave like structures also
causing certain numerical uncertainties like problems in
finding a stationary state. It must be stressed that the
1D reduced model derived here has been confirmed a pos-
teriori using the numerical 2D findings especially for the
EDD-regime. But, for an extended discussion also the
principal mechanism for the Mach number profile to ful-
fill the general condition Eq. 17 must be known to get
a more quantitative picture. However, in the next sec-
tion it is shown basic parametric dependencies of Eq. 22
prevail for both, the electron drift dominated regime and
the ion drift dominated regime.

VII. SOL WIDTH IN PARAMETER SCAN

In this section results from 2D simulations are pre-
sented to examine whether the details of the X-point ge-
ometry have some effect on the basic relations Λ∼T 1/2

and Λ∼B̂−1

θ expressed in Goldston’s estimate and how it
is affected by the different regimes. Several simulations
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FIG. 9 (Color online) Top: Dependence of Λ on the electron
temperature Te in ion drift dominated regime. Shown are the
profiles of the inverse logarithmic derivatives Λ=|∂ lnn/∂r|−1

overlaid by straight lines representing the poloidal averages.
Bottom: Log-Log-plot to prove the parametric dependence
according to Eq. 22. for Λ.

have been conducted for the ASDEX like geometry with
parameters chosen as in Section IV and VI, and firstly
for varying temperatures 5 eV ≤T≤ 500 eV and secondly
for varying poloidal magnetic field, i. .e. varying value
of C in a range such that 0.028 T≤〈B̂θ〉≤0.56 T. The
results for the profiles of the decay length |∂ lnn/∂r|−1

are shown in logarithmic plots Figs. 8-11. It can be seen
that in the EDD-regime (Figs. 8 and 10) the decay length
obtained by the logarithmic derivative of the numerical
profiles of the density in the SOL is to a large extent
constant along the poloidal angle. Also it is obvious that
the values of Λ follow closely the expected functional de-
pendence on T and B̂θ described by Eq. 22. However,
in some cases the precise values of Λ can differ by a fac-
tor of 2-4 for inner and outer target and with respect to
the analytical result from Eq. 22, especially for low 〈B̂θ〉.
The situation looks much more complicated for the IDD-
regime (Figs. 9 and 11). There the poloidal variation of
the decay length can be strong, in particular when the
drift effect becomes stronger for higher temperatures and
lower poloidal field. However, the parametric dependence
of the averaged decay length on T and Bθ agrees quite
well with the Goldston like formula Eq. 22. In summary
it can be concluded that the numerical results confirm the
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FIG. 10 (Color online) Top: Dependence of Λ on the

poloidal magnetic field B̂θ in electron drift dominated regime.
Shown are the profiles of the inverse logarithmic derivatives
Λ=|∂ lnn/∂r|−1 overlaid by straight lines representing the
poloidal averages. Bottom: Log-Log-plot to prove the para-
metric dependence according to Eq. 22. for Λ.

linear functional dependance of the averaed decay length
on the poloidal Larmor radius ρp

〈Λ〉 ∼ ρp, ρp =

√

2Tmi

e2B̂2

θ

(25)

but uncertainties remain concerning the proportionality
constant and in some cases the assumption of an over-
all constant decay length is not justified. However, for
most of the cases considered the expression Eq. 22 gives
a very precise estimate for the SOL width found in the
2D simulations.

VIII. DIFFUSIVE TRANSPORT AND SOL WIDTH

In this section 2D results from simulations including
homogeneous diffusive particle feeding of the SOL are
presented. For this purpose the model equations Eq. 1
and 11 are modified as follows (again the minus sign is
used for the EDD-regime)

∂n

∂t
+∇ · (nu‖)−∇ · (nu∗) = ∇ · (D⊥ ·∇n) (26)
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FIG. 11 (Color online) Top: Dependence of Λ on the

poloidal magnetic field B̂θ in ion drift dominated regime.
Shown are the profiles of the inverse logarithmic derivatives
Λ=|∂ lnn/∂r|−1 overlaid by straight lines representing the
poloidal averages. Bottom: Log-Log-plot to prove the para-
metric dependence according to Eq. 22. for Λ.

∂n

∂t
+

1

J

∂

∂θ

(

J
Bθ

B
nu‖−Jnuθ

×

)

− 1

J

∂

∂r

(

Jnur
×

)

=
1

J

∂

∂r

(

J
D⊥

grr

∂n

∂r

)

(27)

Here D⊥ is a constant diffusion coefficient. The results
for varying values of D⊥ in the range between 0.001 m2/s
and 0.5 m2/s are shown in Figs. 12 and 13. Again the
profiles of the inverse logarithmic derivative of the den-
sity are shown. For the EDD-regime and low values of
D⊥ the profiles are rather flat but for higher values of D⊥

the assumption of a constant Λ is not justified anymore.
For the IDD-regime the same strong variations of decay
length are visible as in the previous sections. For fur-
ther analysis also the averaged values of the numerically
obtained decay length are shown as straight horizontal
lines in Figs. 12 and 13 top. These are complemented
by log-log-plots including a fit based on the functional

Λ=Λ0

(

1 +
√

1 +D⊥/D∗

)

/2. which is motivated by an

extension of the 1D model we will introduce below. De-
spite the details of decay length profiles it is obvious
that additional diffusion increases the SOL width and
Λ changes significantly for D⊥>0.01 m2/s. For D⊥=0.2
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m2/s it is about a factor of 5 larger than the drift-based
value for both regimes. Using the same assumptions as
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FIG. 12 (Color online) Electron drift dominated regime. Top:
Dependence of Λ on the additional particle diffusion charac-
terized by D⊥. Shown are the profiles of the inverse loga-
rithmic derivatives Λ=|∂ lnn/∂r|−1 overlaid by straight lines
representing its respective θ-averaged value. Bottom: Log-
log-plot of decay length vs diffusion coefficient compared to
the fitting formula Eq. 33 and the limiting cases Λ0 and ΛD.

in Section V we incorporate the particle diffusion by the
following extension of Eq. 15

u‖
∂n

∂θ
= −n

∂u‖

∂θ
+

B

Bθ

(

−ur
×

Λ
+

D⊥

Λ2grr

)

n (28)

and the equation for the Mach number M becomes

M − M3

3
=

∫

B

Bθ

(

− ur
×

Λcs
+

D⊥

Λ2grrcs

)

dθ + CM (29)

Therefore, a quadratic equation for Λ results

c2Λ
2 − c1Λ− c0D⊥ = 0 (30)

where

c2 = M2 −
M3

2

3
−M1 +

M3
1

3
(31)

and

c1 = −
θ2
∫

θ1

Bur
×

Bθcs
dθ, c0 =

θ2
∫

θ1

B

Bθgrrcs
dθ (32)
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FIG. 13 (Color online) Ion drift dominated regime. Top: De-
pendence of Λ on the additional particle diffusion character-
ized by D⊥. Shown are the profiles of the inverse logarithmic
derivatives Λ=|∂ lnn/∂r|−1 overlaid by straight lines repre-
senting its respective θ-averaged value. Bottom: Log-log-plot
of decay length vs diffusion coefficient compared to the fitting
formula Eq. 33 and the limiting cases Λ0 and ΛD.

Here M1=M(θ1) and M2=M(θ2) are the Mach numbers
at the integration boundaries. The problem in solving
equation Eq. 30 is the lack of appropriate integration
limits θ1 and θ2. In Section V the transition points with
|M |=1 offered a reasonable choice. For the drift-diffusive
problem of Eq. 29 such a choice is not obvious. However,
the solution of Eq. 30 can be written in the form

Λ =
Λ0

2

(

1 +

√

1 +
D⊥

D∗
⊥

)

(33)

with Λ0 the decay length in drift limit (D⊥=0) and D∗
⊥

a scaling diffusion coefficient

Λ0 =
c1
c2
, D∗

⊥ =
c21

4c0c2
(34)

For D⊥≫D∗
⊥ the decay length is given by

Λ = ΛD =
Λ0

2

√

D⊥

D∗
⊥

=

√

4D⊥c0
c2

(35)

and the contribution c1 due to the drift effect is canceled
out. This gives reason to the particular fit function
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used in Figs. 12 and 13. resulting in Λ0=2.27 mm and
D∗=8.08·10−3 m2/s for the EDD-regime. Even though
the decay lengths in the IDD-regime, Fig. 13, show a
similar tendency, the fit function does not work as well
as for the EDD-regime. This reflects the more irregular
profiles of the decay lengths already seen in the previous
sections. It can be concluded that even a particle diffu-
sion of D⊥=0.05 m2/s, which is relatively low compared
to typical edge transport simulations, is enough to cover
the effects of drift-based transport and its related SOL
width completely. This is of importance for future stud-
ies with more sophisticated numerical approaches like the
one reported in Ref. [4]. Also the existence of transition
points located at ur

×=0 might give a hint for experimental
proof of the dominance of the drift-based particle trans-
port underlying the heuristic model of Goldston. To ex-
tend the discussions on the particularities and in view
of the results of Ref. [4] we show in Fig.14 additional
Mach number profiles for the IDD-regime and for vary-
ing diffusivity 0.001 m2s−1≤D⊥≤0.1 m2s−1. It is appar-
ent that the shock wave like structure, i. e. the sudden
jump in Mach number, and supersonic flows disappear
for D⊥>0.01 m2s−1 and only a single stagnation point
with M=0 remains. It is noteworthy that the authors
of Ref. [4] report about numerical diffulties for values
D⊥<0.1 m2s−1. Possibly, these are related to the shock
wave signatures observed in this work and a more de-
tailed comparison with Mach number profiles might con-
firm this.
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u
||
/c

s

θ [rad]
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D=0.02
D=0.05
D=0.10

FIG. 14 (Color online) Mach number profiles in the IDD-
regime for varying diffusion coefficient. The green lines label
the points where ur

×=0.

IX. CONCLUSIONS

• The parametric dependence of Goldston’s estimate for
the scrape-off particle width has been assessed by 2D
simulations in X-point magnetic configurations sup-
ported by a 1D approximative model. The functional
dependencies of Goldston’s λ-formula have been con-
firmed for the averaged density decay length.

• The simulations indicate that in situations where the
radial particle transport in the SOL is dominated by

the diamagnetic drift effect supersonic transitions are
likely to occur. On the other hand, the particular lo-
cation for such a transition to occur is inevitably con-
nected with the points where the radial drift is zero in
case the drift-based transport is dominant. This dif-
fers completely from the diffusion dominated case and
might give a hint for experimental proof.

• The inverse B̂θ dependence is confirmed but for a quan-
titative calculation of the scrape-off width it is of im-
portance to use the local value in the region of particle
inflow from the core into the SOL to get the right pro-
portionality factor.

• The different regimes where either the electron diamag-
netic drift or the ion diamagnetic drift dominate the
perpendicular transport show very different signatures.
The first shows a much more simple overall structure of
density and flow profiles, which can be described quite
well by a reduced 1D model. The latter exhibits shock
wave signatures at the top of the standard ASDEX Up-
grade magnetic configuration considered in this work
and strong variations in the radial density profiles.

• An additional particle diffusion increases the decay
length Λ significantly even for moderate diffusivities
compared to typical values used for anomalous diffu-
sion in transport codes. Therefore, studies on the drift-
based effects should be pushed to the numerically more
challenging limit of very small particle diffusion in the
range of D⊥∼10−2 m2/s and beyond.

• Finally, we point out that the relevance of an assumed
dominance of diamagnetic drifts in the perpendicular
particle transport is to be assessed with respect to the
quasineutrality constraint as discussed in Appendix A
to get more insight into the conditions compatible with
the model considered in this work.
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APPENDIX A: Diamagnetic currents and quasineutrality

As mentioned in Sec. II the model proposed by Eqs. 1
and 2 have to be considered with caution. Due to the
quasineutrality condition ∇ · J=0, in principle it does
not make a difference whether one uses the electron or ion
continuity equation to describe the evolution of particle
density. However, the deliberate reduction of the particle
flow to a drift-dominated scenario as in Eq. 1 introduces
limitations for the applicability of the model with respect
to parallel currents, sources and sinks and electric fields.
A general study or conclusion on this issue it out of the
scope of this work. But, in this section we try to discuss
briefly a few important implications of the fluid model of
Sec. II.

To elucidate the interplay of parallel and perpendicu-
lar currents we start with the general expression for per-
pendicular the flow velocity V⊥ of a species with charge
number Z (see, e. g. Ref.[8])

V⊥ =
E×B

B2
+

B×∇p

ZenB2
+

m

ZeB2
B× dV

dt

+
Sm ×B

ZenB2
+

mSn

ZenB2
B×V⊥

(A1)

where d/dt = ∂/∂t+V·∇ and Sn and Sm include sources,
sinks and viscosity for particles and momentum. Us-
ing this recursive expression for the ion-electron plasma
considered here and taking into account quasineutrality
∇ · J=0 one finds the relations

∇ · (nv) = ∇ · (nu)

= ∇ · (nv‖ + nv∗) +∇ · (nVE)

−∇ ·
(

men

eB2
B× dv

dt
+

S
e
m ×B

eB2
+

meS
e
n

eB2
B× v⊥

)

= ∇ · (nu‖ + nu∗) +∇ · (nVE)

+∇ ·
(

min

eB2
B× du

dt
+

S
i
m ×B

eB2
+

miS
i
n

eB2
B× u⊥

)

(A2)

where u and v are the ion and electron flow velocity, re-
spectively. Here u∗ and v∗ denote the diamagnetic drift
velocities of ions and electrons, and VE is the E×B-drift
velocity. The terms proportional to du/dt and dv/dt are
the respective inertial contributions (polarisation drifts).

Of course, these relations are just a variant of the gen-
eral perpendicular momentum equations, telling nothing
more that the plasma flows, sources, sinks and electric
fields have to rearrange in a way that quasineutrality is
retained. A general treatment of this situation is a com-
plicated task, even numerically. However, in accordance
with the neglect of sources, sinks and viscosity in the dis-
cussions of this work and in Ref. [1] we distinguish two
different regimes dominated by diamagnetic drifts:

Electron diamagnetic drift regime (EDD-regime):
the radial particle transport is determined by the elec-
tron diamagnetic drift v∗

∇ · (nv) = ∇ · (nv‖ + nv∗) (A3)

which requires

∇ ·
(

nVE − men

eB2
B× dv

dt

)

= 0 (A4)

Ion diamagnetic drift regime (IDD-regime): the ra-
dial particle transport is dominated by the ion diamag-
netic drift u∗

∇ · (nu) = ∇ · (nu‖ + nu∗) (A5)

which requires

∇ ·
(

nVE +
min

eB2
B× du

dt

)

= 0 (A6)

This means that the SOL model considered here needs
the polarisation current of the electrons or ions to close
the current loops in the presence of diamagnetic drifts.
One might proceed by assuming dominance of the E×B-
drift and considering the stationary case giving

B× dv

dt
≈ B×

(

v‖ +VE

)

·∇VE (A7)

B× du

dt
≈ B×

(

u‖ +VE

)

·∇VE (A8)

Inserting these approximations into Eqs. A4 or A6 then
would provide an equation for the electric field necessary
for quasineutrality in the respective regime. Even for
this approximative treatment a non-linear equation for
E results which is coupled to the parallel flows of ions
and electrons. In this work we did not attempt to solve
the full problem connected with the detailed current bal-
ance and restrict ourselves to scenario (1). Also, we did
not attempt to quantify the consequences of this choice
to avoid a chain of additional speculations. Therefore,
the comparison of the results presented here with exper-
iments or extended simulations should be accompanied
by a detailed analysis of the full drift dynamics including
electric fields and currents. Discussions related to these
different regimes also can be found in Refs. [1] and [4]
and the brief comment of this Appendix gives hints for a
systematic assessment of the model used.
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APPENDIX B: Magnetic field configuration and conformal
mapping

A conformal map R + iZ=f(r, θ) is defined where R
and Z are related to Cartesian coordinates via

x = R cosφ, y = R sinφ, z = Z (B1)

and f is chosen as

f =
(

R0 − e−iϑ
√

r2 − h2 e2iϑ
)

eiξ

+
(

1− eiξ
)

(R0 + iZ0)

(B2)

The coordinate ϑ is given as a function of θ

ϑ =
π

2 erf(3π/s)

[

erf

(

3π

s

)

− erf

(

3 π − θ

s

)

+erf

(

π + θ

s

)

− erf

(

π − θ

s

)]

(B3)

The Eqs. B1-B3 define the transformation between the
coordinate functions (x, y, z), (R, φ, Z) and (r, θ, φ). Due
to the properties of conformal maps the coordinates
(r, θ, φ) are right-handed orthogonal. Their coordinate

lines are similar to tokamak X-point geometries with
X-point being located at r=h and θ=0. This mapping
of an X-point tokamak field onto an orthogonal grid in
the (r, θ)-plane is particularly suitable for numerical ap-
proaches. Note that for h→0, ∂ϑ/∂θ=1, a circular ge-
ometry is recovered. The parameters R0, Z0, ξ and s
are introduced to translate and rotate the grid and to
control the resolution close to the X-point. The point
(R0, Z0) defines the center of rotation in the (R,Z)-plane
and ξ denotes the rotation angle. A parameter s>1 is
used to increase the density of grid points close to the X-
point while the grid points are still equidistant on the θ-
coordinate lines. An example of a resulting grid is shown
in Fig. 1. The tranformation is characterized by the Ja-
cobian J=er · eθ × eφ

J =
R

r

∂ϑ

∂θ

r4√
r4 − 2 h2 r2 cos 2ϑ+ h4

(B4)

and the metric coefficients grr, gθθ and gφφ

grr =
J

rR

1

∂ϑ/∂θ
, gθθ =

rJ

R

∂ϑ

∂θ
, gφφ = R2 (B5)


